Федеральное государственное автономное образовательное учреждение высшего образования «Северо-Кавказский федеральный университет»

Никова Марина Сергеевна

Синтез и исследование оксидных композиций со структурой граната в системе Y_2O_3 - Yb_2O_3 - Sc_2O_3 - Al_2O_3 для оптической керамики

05.27.06 – Технология и оборудование для производства полупроводников, материалов и приборов электронной техники

Автореферат диссертации на соискание ученой степени кандидата технических наук

Научный руководитель: доктор технических наук, старший научный сотрудник Воробьев Виктор Андреевич

Ставрополь - 2020

Общая характеристика работы

Актуальность темы исследования

Разработка и исследование технологических, а также физико-химических принципов и способов создания новых и совершенствования традиционных материалов для оптики и фотоники, является актуальной задачей современного материаловедения. С момента сообщения о том, что керамические активные среды не уступают монокристаллам по уровню мощности генерируемого лазерного излучения (*Ikesue A.*, 1995 г.), резко возросло число исследований, посвященных вопросам изготовления высокоплотной оптически прозрачной керамики (ОПК) со светопропусканием более 80 % в видимом и ближнем ИК-диапазоне.

В настоящее время для создания ОПК используют различные оксидные композиции, в том числе иттрий-алюминиевый (YAG), галий-гадолиниевый (GGG) и лютеций-алюминиевый гранаты (LuAG), а также оксиды иттрия, лютеция и твердые растворы на их основе (Kong L.B. et al, 2015). В зависимости от назначения ОПК в ее состав могут входить различные редкоземельные элементы (Re), в том числе, Yb³⁺, Nd³⁺ (твердотельные лазеры с диодной накачкой); Er³⁺, Tm³⁺, Ho³⁺ (лазеры ИК диапазона с безопасным для зрения излучением); Ce³⁺, Eu³⁺ (люминесцентная керамика для светоизлучающих диодов и сцинтилляторов). Известно, что внедрение скандия В данные композиции приводит к разупорядочению структуры граната и внесению искажений в кристаллическое поле, что, в свою очередь, проявляется в изменении спектрально-люминесцентных, физических и теплофизических оптических, характеристик создаваемого материала. Благодаря этому, существует возможность управлять свойствами ОПК посредством изменения состава.

Большой вклад в исследование скандий-содержащих гранатов был внесен такими советскими и российскими учеными как Жариков Е.В., Загуменный А.И., Каминский А.А., Каурова И.А., Лукин Е.С., Лутц Г.Б. До недавнего времени были известны составы монокристаллов и керамик с замещением скандием до 100 ат. % октаэдрической позиции граната. Гранаты со скандием в додекаэдрических позициях изучены в значительно меньшей степени. В частности, максимальная концентрация скандия в *YSAG:Re* составляла 11 ат.%. При этом, применительно к технологиям ОПК, не уделялось должного внимания исследованиям пределов растворимости скандия в указанных подрешетках гранатов. Кроме того, оставался открытым вопрос о влиянии температуры синтеза и условий вакуумного спекания на стабильность скандиевых гранатов, а также о влиянии положения скандия на оптические и теплофизические характеристики скандий-содержащей ОПК.

Выбор системы Yb_2O_3 - Y_2O_3 - Sc_2O_3 - Al_2O_3 в качестве объекта данного исследования обусловлен востребованностью составов YSAG:Yb для создания активных тел твердотельных лазеров с диодной накачкой. Поскольку внедрение скандия в решетку YAG:Yb приводит к уширению спектров поглощения и излучения, к увеличению времени жизни возбужденного состояния и к уменьшению длительности импульсов когерентного излучения, то гранаты YSAG:Yb являются перспективными средами для лазеров с высокой средней мощностью и ультракороткой длительностью импульсов.

В связи с этим исследование условий существования скандий-содержащих твердых растворов со структурой граната являются актуальными и представляют не только научный, но и практический интерес для технологий оптической керамики.

Цели работы и задачи исследования

Целью диссертационной работы является синтез и исследование зависимости физико-химических и морфологических свойств нанопорошков, теплофизических и оптических свойств керамики от катионного состава оксидных композиций со структурой граната, принадлежащих системе Y_2O_3 - Yb_2O_3 - Sc_2O_3 - Al_2O_3 .

Для достижения цели были определены следующие задачи:

1. На основе метода обратного осаждения разработать методику синтеза слабоагломерированных керамических порошков *YSAG:Yb* с высокой химической и фазовой однородностью, обеспечивающую получение оптической керамики со светопропусканием в видимом и ближнем ИК-диапазоне более 80 % без учета полос поглощения иттербия.

2. Разработать методику оценки фактического катионного состава гранатов со скандием в додекаэдрической и октаэдрической позициях иттрий-алюминиевого и иттербий-алюминиевого граната.

3. Установить зависимости предельной концентрации скандия в додекаэдрической и октаэдрической позициях иттрий-алюминиевого и иттербий-алюминиевого граната от температуры синтеза, в том числе при совместном легировании обеих позиций.

4. Исследовать влияние катионного состава граната на морфологию, фазовый состав, рентгеноструктурные параметры керамических порошков и оптические характеристики керамики во взаимосвязи с температурой синтеза и вакуумного спекания образцов.

5. Провести исследование оптических и теплофизических свойств образцов керамики на основе иттрий-скандий-алюминиевого граната, легированного иттербием, полученных в рамках диссертационной работы.

Методы исследования и использованная аппаратура

– морфологию, гранулометрический состав и размер частиц нанопорошков, а также размер зерен исследовали методами растровой электронной микроскопии (*MIRA 3 LMH, Tescan*) и лазерной дифракции (*Analysette 22 MicroTec Plus, FRITSCH*);

– фазовый и элементный состав, параметр решетки и величину области когерентного рассеяния нанопорошков *YSAG:Yb* определяли методами энергодисперсионной рентгеновской спектроскопии (*AZtecEnergy Standard / X-max 20 (standard), Tescan*) и рентгенофазового анализа (*Empyrean, PANalytical*);

– потери массы и температуры фазового перехода порошков оксигидратов и исходных солей определяли методами термогравиметрии, дифференциального термического анализа и дифференциальной сканирующей калориметрии (*TG/DTA/DSC*, *STA 449 F5 Jupiter*, *NETZSCH*);

– для определения величины удельной площади поверхности нанопорошков применяли метод газовой адсорбции БЭТ (*3Flex, Micrometrics*);

– кривые усадки определяли методом дилатометрического исследования (*DIL 402C, NETZSCH*);

– величину светопропускания образцов оптической керамики определяли в диапазоне длин волн 400 – 2500 нм (СФ-56, ФСМ-1211, ЛОМО);

– тепло- и температуропроводность образцов керамики исследовали методом лазерной вспышки (*LFA 467 HyperFlash, NETZSCH*).

Научная новизна работы

1. Экспериментально установлено, что предельная концентрация Sc^{3+} в додекаэдрической позиции гранатов *YSAG* и *YbSAG* при температуре 1700 °C составляет 64 ± 2 ат. % и слабо зависит от типа структурообразующего катиона в додекаэдрической позиции. Впервые синтезированы керамические порошки *YSAG* и *YbSAG* с концентрацией скандия в додекаэдрической позиции граната до 89 ± 2 ат. % при температуре 1300 °C и определены параметры их кристаллических решеток.

2. На основании экспериментальных и теоретических исследований установлено, что предельная концентрация скандия в октаэдрической позиции *YbSAG* при температуре 1700 °C составляет $66,5 \pm 2$ ат. %, а для *YSAG* достигает ~97,5 ± 2 ат. % и не зависит от температуры синтеза.

3. Установлено, что внедрение скандия одновременно в додекаэдрическую и октаэдрическую позиции граната ведет к снижению предельно возможной концентрации скандия в каждой из позиций. Также, как и в случае легирования скандием одной из позиций граната, с повышением температуры максимально возможная концентрация скандия снижается.

4. Установлено, что диапазон оптимальных температур вакуумного спекания существенным образом зависит от концентрации скандия в додекаэдрической решетке граната.

5. Впервые исследованы теплофизические характеристики образцов оптической керамики *YSAG:Yb* с концентрацией скандия в додекаэдрической позиции граната до 20 ат.% и установлено, что положение скандия в решетке граната не оказывает существенного влияния на величину теплопроводности.

Практическая значимость работы

1. Определена область составов оксидных композиций со структурой граната в системе Y_2O_3 - Yb_2O_3 - Sc_2O_3 - Al_2O_3 , перспективных для изготовления оптически прозрачной керамики, в том числе лазерного качества.

2. Разработан способ получения образцов оптически прозрачной керамики с концентрациями скандия в додекаэдрической позиции граната до 20 ат.%, что в 2 раза превышает концентрацию скандия в известных монокристаллах *YSAG:Re*.

Результаты научных исследований были использованы при подготовке научно-технической документации (итоговый научно-технический отчет; разовый технологический регламент) в рамках проекта Фонда перспективных исследований «Разработка физико-химических и технологических основ синтеза оптической нанокерамики на основе редкоземельных элементов для создания твердотельных дисковых лазеров», договор № 6/023/2014-2017 от 15 декабря 2014 года (срок реализации проекта 2014 – 2017 гг.).

3. Результаты диссертационного исследования были использованы в опытнопроизводственном процессе на базе ООО Научно-производственная фирма «Экситон» при разработке технологии изготовления композитных лазерных активных элементов, а также используются в учебном процессе физикотехнического факультета СКФУ.

4. Результаты научных исследований были использованы при подготовке 2 патентов (патент на изобретение RU 2700074 C1 12.09.2019 г., авторы Голота А.Ф., Тарала В.А., Чикулина И.С., Малявин Ф.Ф., Шама М.С.; патент на изобретение RU 2705848 C1 12.11.2019 г., авторы: Голота А.Ф., Вакалов Д.С., Евтушенко Е.А., Кичук С.Н., Тарала Л.В., Малявин Ф.Ф., Прокопенко Л.Д., Чикулина И.С., Шама М.С.)

Научные положения, выносимые на защиту

1. Методика оценки фактического катионного состава гранатов со скандием в додекаэдрической и октаэдрической позициях керамических порошков иттрийскандий-алюминиевого (*YSAG*) и иттербий-скандий-алюминиевого (*YbSAG*) гранатов, разработанная на основе метода рентгенофазового анализа и моделирования рентгенограмм методом Ритвельда, с учетом баланса масс синтезируемых оксидных композиций.

2. Результаты изучения величины предельной концентрации скандия в додекаэдрической и октаэдрической позициях кристаллических решеток иттрийскандий-алюминиевого (*YSAG*) и иттербий-скандий алюминиевого (*YbSAG*) гранатов, а также их твердых растворов, с применением разработанной методики оценки фактического состава гранатов.

3. Результаты изучения «спекаемости» компактов нанопорошков на основе твердых растворов *YSAG: Yb*, синтезированных с различным соотношением скандия в додекаэдрической и октаэдрической позициях, при помощи методов дилатометрии, спектрофотометрии и растровой электронной микроскопии.

4. Результаты изучения теплофизических и оптических свойств образцов керамики *YSAG:Yb* изготовленных с различным соотношением скандия в додекаэдрической и октаэдрической позициях кристаллической решетки граната при помощи методов лазерной вспышки и спектрофотометрии в видимом и ближнем инфракрасном диапазоне.

Апробация результатов

Результаты исследования докладывались и обсуждались на следующих конференциях: VI ежегодная научно-практическая конференция преподавателей, студентов и молодых ученых Северо-Кавказского федерального университета «Университетская наука – региону» (Актуальные проблемы инженерных наук, г. Ставрополь, 2018); 3rd German Polish Conference on Crystal Growth (GPCCG-3), Познань, Польша, 2019 г.; VI, Международная научно-практическая конференция «Проблемы и достижения в науке и технике», г. Омск, 2019; VIII Международная конференция «Наноматериалы и Технологии» (НИТ 2019), пос. Гремячинск, озеро Байкал, 2019; XXV Международная конференция «Оптика и спектроскопия конденсированных сред», п. Агой, Краснодарский край, 2019); Школа-конференция молодых ученых «Прохоровские недели», 2019, г. Москва.

Публикации

По результатам исследований опубликовано 16 научных работ, в том числе 4 статьи в изданиях, входящих в международные базы данных *Web of Science* и *Scopus*, получено 2 патента на изобретение.

Достоверность результатов

Достоверность результатов экспериментальных исследований обеспечена применением высокоточного оборудования и отработанных методик, проведением серий параллельных и взаимно-дополняющих экспериментов, а также хорошим согласием между экспериментальными и теоретическими данными, в том числе представленными в литературных источниках.

Личный вклад автора

Автором лично сформулированы задачи, а также основные выводы по результатам диссертационной работы; разработана методика определения фактического катионного состава гранатов со скандием в додекаэдрических и октаэдрической позициях граната; выполнена интерпретация результатов экспериментальных и теоретических исследований.

Совместно научным руководителем с выбрано направление И сформулирована цель научных исследований; подобраны методики для изучения свойств синтезированных образцов. Рассматриваемые структуры И в диссертационной работе экспериментальные образцы получены и исследованы при непосредственном участии автора, совместно с сотрудниками научнолабораторного комплекса чистых зон Инженерного института (НЛК) СКФУ. Публикации по результатам исследований подготовлены совместно с соавторами.

Структура и объем диссертации

Диссертация состоит из введения, пяти глав, заключения, списка литературных источников, списка сокращений и условных обозначений, двух приложений. Работа содержит 16 таблиц, 79 рисунков и изложена на 177 страницах, включая список литературных источников, содержащий 198 наименований.

Благодарности

Автор выражает глубокую благодарность научному руководителю д.т.н. В.А. Воробьеву за помощь в организации и проведении исследований, полезные консультации по результатам исследований, а также конструктивную критику.

Выражаю признательность всему коллективу научно-лабораторного комплекса чистых зон и ранее существовавшей лаборатории перспективных технологий керамики СКФУ за всестороннюю помощь и поддержку при проведении экспериментов, и искреннюю благодарность лично зав. НЛК чистых зон СКФУ к.х.н. В.А. Тарала за научную, методическую и организационную помощь и поддержку при проведении исследований, а также консультации и плодотворные дискуссии по результатам исследований. Также благодарю к.х.н. С.В. Кузнецова (ИОФ им. А.М. Прохорова РАН) за конструктивную критику.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении приведена общая характеристика работы, дано обоснование актуальности выбранной темы, сформулированы цели и задачи исследования, изложены основные положения, выносимые на защиту.

В первой главе представлен аналитический обзор литературных источников по тематике исследования. Дана общая характеристика соединений со структурой граната. Описана кристаллическая решетка соединений со структурой граната и существующие формулы для расчета параметра элементарной ячейки. Рассмотрены диаграммы состояния твердых растворов на основе оксидов иттрия, иттербия,

алюминия и скандия. Рассмотрены технологии получения керамических порошков и оптической керамики.

Во второй главе представлены характеристики основных используемых Описаны технологические операции материалов. подходы И получения нанопорошков и образцов оптической керамики на основе иттрий-иттербийскандий-алюминиевого Представлено описание оборудования. граната. используемого для синтеза порошков оксигидратов методами соосаждения, их дезагрегации, компактирования и вакуумного спекания заготовок. Описаны методы и оборудование, использованные для исследования гранулометрического, фазового и элементного состава, морфологии и величины удельной площади поверхности нанопорошков, величин светопропускания образцов керамики И ИХ теплофизических характеристик.

В главе 3 изложены результаты исследования процессов синтеза оксигидратов и керамических порошков из раствора солей хлоридов алюминия, иттрия, иттербия и скандия. Данные исследования были направлены на снижение степени агломерации частиц и содержания нежелательных примесей, а также на увеличение удельной площади поверхности керамических порошков.

В частности, показано, что увеличение в растворе солей концентрации сульфата аммония до 0,15 моль/л при синтезе капельным способом приводит не только к повышению величины удельной площади поверхности керамических порошков YAG:Yb (более чем на порядок) при одновременном снижении степени агломерации (более чем на два порядка) (рис. 1), но также способствует снижению концентрации примесей хлора в порошках оксигидратов (рис. 2) и, как следствие, в керамических порошках.

На основании проведенных исследований было установлено, что эффективная концентрация диспергирующего агента (сульфата аммония) в растворе солей составляет порядка 0,06 – 0,08 моль/л. Как показано на рисунках 1 и 2, при дальнейшем увеличении концентрации характеристики порошков оксигидратов и керамических порошков *YAG:Yb* изменяются незначительно. Аналогичный результат был получен также в случае синтеза порошков *YSAG:Yb*. Было обнаружено, что в случае применения метода распыления при синтезе

керамических порошков, увеличение удельной площади поверхности и снижение концентрации хлора можно достичь путем применения сульфата амония в качестве компонента размольной среды на стадии дезагрегации порошков оксигидратов. Наблюдаемый эффект можно объяснить тем, что в процессе измельчения разрушаются агломераты и увеличивается площадь поверхности порошков оксигидратов. В результате этого возрастала роль процессов замещения ионов хлора на сульфат-ионы, а, следовательно, увеличивалось насыщение поверхности порошка диспергирующим реагентом.В рамках третьей главы также рассмотрено влияние температуры прокаливания порошков оксигидратов на фазовый состав, величину параметра решетки, размер частиц, удельную площадь поверхности, степень агломерации и морфологию керамических порошков *YSAG:Yb*.

Проведенные исследования позволили обнаружить, что в диапазоне температур 950 – 1150 °С при формировании фазы *YSAG:Yb* происходит ряд структурных изменений, вызванных процессами разложения оксисульфата иттрия и миграцией скандия из додекаэдрической в октаэдрическую позицию граната. Так, в частности, при температуре 950 °С часть позиций иттрия занимает скандий. По мере увеличения температуры прокаливания происходит разложение оксисульфата и встраивание иттрия в структуру граната, сопровождающееся перераспределением скандия в подрешетках алюминия. В пользу данного механизма образования фазы граната свидетельствует увеличение ее параметра кристаллической решетки (рис. 3).

Без применения диспергирующего агента, с увеличением температуры прокаливания наблюдалось только снижение параметра кристаллической решетки фазы граната, что являлось закономерным по причине возрастания размера нанокристаллитов. При температуре 1200 °C и выше изменения в фазовом и катионном составе фазы граната зафиксированы не были.

Следует отметить, что по результатам исследований были синтезированы монофазные керамические порошки состава $Y_{2,58}Yb_{0,29}Sc_{0,38}Al_{4,75}O_{12}$, и изготовлена оптическая керамика со светопропусканием в видимом и ближнем ИК-диапазоне около 80 % без учета полос поглощения иттербия. Таким образом, была подтверждена целесообразность применения описанных параметров и режимов синтеза при изготовлении керамических порошков для оптической керамики, которые и были использованы в рамках четвертой и пятой глав.

Глава 4 посвящена исследованиям предельной концентрации скандия в додекаэдрических и октаэдрических позициях керамических порошков *YSAG* и *YbSAG*.

Разработанный алгоритм представлен на рис. 5.

Рис. 5. Алгоритм оценки пределов растворимости скандия в *YSAG* и *YbSAG: Sx, Sx'* – состав оксидной композиции; *Gx* – состав граната;

SS_x – примесная фаза с кубической сингонией, твердый раствор иттрия или иттербия со скандием; *SP_x* – примесная фаза с ромбоэдрической сингонией, соединение скандия и алюминия; а – экспериментально определённый параметр решетки; *a_{SV}* – рассчитанное по формуле (3) значение параметра решетки для исследуемого состава *S_x* или *S_x*'

Основными его этапами являлся синтез оксидной композиции заданного состава в диапазоне температур 1100 – 1700 °С, сравнение экспериментальных и теоретических величин параметров решетки, определение фазового состава композиции, выбор уточненного состава и его синтез.

Следует отметить, что наилучшее согласие между экспериментально измеренными и расчетными величинами параметров решетки твердых растворов *YSAG* и *YbSAG* было получено при использовании уравнения (1), которое дает усредненное значение (a_{SV}) эмпирических формул Строка (a_{S}) (*Strocka B., Holst P. and Tolksdorf W.*, 1978) и Воробьёва (a_{V}) (*Vorobiov Y. and Carban O.*, 1997):

(1)

$$a_{S} = 7,02954 + 3,31277r_{A} + 2,49398r_{B} + 3,34124r_{C} - 0,87758r_{A}r_{B} - 1,38777r_{A}r_{C}$$
(2)

$$a_V = 10,092217 + 0,841118r_A + 0,734598r_B - 2,507813r_C + 3,133970r_Ar_C + 1,946901r_Br_C \quad (3)$$

где r_A , r_B и r_C – ионные радиусы по Шеннону для атомов в позициях A, B и C соответственно, a_S – параметр кристаллической решетки граната, рассчитанный по эмпирической формуле Строка; a_S – параметр кристаллической решетки граната, рассчитанный по эмпирической формуле Воробьева; a_{SV} – параметр кристаллической решетки граната.

В рамках автореферата детально процедуру определения фактического состава гранатов предложено рассмотреть на примере иттербий-скандийалюминиевого граната. В соответствии со схемой (рисунок 5), для предварительной оценки предельной концентрации скандия в додекаэдрической позиции был выбран состав S_1 ($Yb_{0,3}Sc_{2,7}Al_5O_{12}$), особенностью которого являлась близость его к составу « $Sc_3Al_5O_{12}$ » с теоретически предельной концентрацией скандия в исследуемой позиции граната. Несмотря на то, что в ряде литературных источников допускается возможность образования фазы граната в системе Sc_2O_3 - Al_2O_3 , на настоящей момент экспериментальное подтверждение этой фазы отсутствует.

Анализ данных о фазовом составе образцов S_I (рис. 6) показал, что после прокалки при температуре 1100 °С исследуемый материал был еще не полностью сформирован и находился в нанокристаллическом состоянии. После отжига при температуре 1300 °С в составе образца были обнаружены 3 фазы (рис.6): гранат G_I . $I_{,3}$, небольшое количество второй фазы $SP_{I-I,3}$, представляющей собой твердый раствор оксидов алюминия и скандия с ромбоэдрической структурой и незначительное количество фазы оксида алюминия. При дальнейшем увеличении температуры синтеза на рентгенограммах наблюдалось снижение интенсивностей пиков, отвечающих за фазу граната и увеличение интенсивности рефлексов фазы SP_x , что свидетельствовало о снижении содержания фазы граната в материале. Кроме того, обнаружено, что параметр решетки граната ($G_{I-I,3}-G_{I-I,7}$) увеличивался с ростом температуры, что указывало на изменение катионного состава твердого раствора YbSAG (рис. 7).

Рис. 6. Дифрактограммы образцов состава *S*₁, прокаленных при 1100 – 1700 °C

Рис. 7. Зависимость параметра решетки образцов S_1 и S_1' от температуры синтеза

С учетом данных об эффективных ионных радиусах катионов, наблюдаемое увеличение параметра решетки свидетельствует об уменьшении содержания скандия в додекаэдрической позиции граната, либо об его увеличении в октаэдрической позиции. Дальнейшее уточнение фактического состава фазы гранатов было выполнено путем решения обратной задачи при помощи уравнения (1). В результате был определен диапазон возможных составов, соответствующих экспериментально рассчитанному параметру решетки. При температуре 1600 °C данный диапазон был записан в виде выражения (4):

$$[Yb_{3-x}Sc_x][Al_{(2,9206-0,4884x)}Sc_{(0,4884x-0,9206)}]Al_3O_{12}, 1,89 < x < 2,53$$
(4)

После этого состав фаз граната был уточнен методом Ритвельда и посредством баланса масс. Результирующая схема фазовых превращений и баланса масс представлена на рис.8.

Для проверки полученных результатов был синтезирован образец S_1' , состав которого соответствовал составу фазы $G_{1-1.6} - [Yb_{1.00}Sc_{2.00}][Sc_{0.10}Al_{1.90}]Al_3O_{12}$. Как видно из рис. 9, на дифрактограммах образцов отсутствуют примесные фазы. Величины параметров решетки образцов в пределах погрешности эксперимента не зависели от температуры синтеза (рис. 7). Следовательно, можно утверждать, что данный состав является стабильным во всем исследуемом диапазоне температур. Кроме того, величины параметров решетки образцов S_1' и $G_{1-1.6}$ совпадали в пределах погрешности, что подтверждает достоверность проведенной оценки предельной концентрации скандия в решетке граната. Результаты исследования основных составов оксидных композиций представлены в таблице 1.

Рис. 9 – Дифрактограммы образцов $S_{I'} = G_{I-1.6}$, прокаленных при 1100 – 1700 °C

с. 10 – Дифрактограмма образца S₃, прокаленного при 1600 °C

,	Исходный состав	T, ℃	Фаза граната				Примесная фаза	
Шифр состава			Шифр	Состав [А ₃][В ₂][С ₃]О ₁₂	Парамет $a \pm 0$ a, A	р решетки ,006 Å a _{sv} , Å	Шифр	a, Å
Sı	Yb0,3Sc2,7Al5O12	1700	G1-1,7	[Yb1,03Sc1,97][Sc0,10Al1,90]Al3O12	11,792	11,792	SP1-1,7	Х
		1600	$G_{1-1,6}$	$[Yb_{1,00}Sc_{2,00}][Sc_{0,10}Al_{1,90}]Al_3O_{12}$	11,783	11,789	SP1-1,6	Х
		1500	G1-1,5	[Yb0,41Sc2,59][Sc0,05Al1,95]Al3O12	11,732	11,732	SP1-1,5	Х
		1300	$G_{1-1,3}$	[Yb _{0,32} Sc _{2,68}][Sc _{0,02} Al _{1,98}]Al ₃ O ₁₂	11,718	11,718	SP _{1-1,3}	Х
		1100	$G_{l-l,l}$	предфаза YbSAG	Х	Х	SP1-1,1	Х
S_{I}'	Yb1Sc2,1Al4,9O12	≤1700	G1-1,7'	[Yb1Sc2][Sc0,1Al1,9]Al3O12	11,784	11,789	_	_
S ₂	Y _{0,3} Sc _{2,7} Al ₅ O ₁₂	1700	G2-1,7	[Y1,08Sc1,92][Sc0,08Al1,92][Al3]O12	11,819	11,820	SP2-1,7	Х
		1600	G2-1,6	[Y1,02Sc1,98][Sc0,08Al1,92][Al3]O12	11,812	11,813	SP2-1,6	Х
		1500	$G_{2-1,5}$	$[Y_{0,71}Sc_{2,29}][Sc_{0,05}Al_{1,95}][Al_3]O_{12}$	11,774	11,774	SP _{2-1,5}	Х
		1300	G2-1,3	[Y0,32Sc2,68][Sc0,02Al1,98][Al3]O12	11,728	11,727	SP _{2-1,3}	Х
		1100	G2-1,1	предфаза YSAG	Х	Х	SP _{2-1,1}	Х
S_2'	Y1,1Sc2,0Al4,9O12	≤1700	$G_{2-1,7}'$	[Y1,1Sc1,9][Sc0,1Al1,9][Al3]O12	11,829	11,825	-	-
S3	Yb ₃ Sc ₂ Al ₃ O ₁₂	1700	G3-1,7	$[Yb_{2,92}Sc_{0,08}][Sc_{1,33}Al_{0,67}][Al_3]O_{12}$	12,152	12,152	SS _{3-1,7}	10,092
		1600	G3-1,6	[Yb2,93Sc0,07][Sc1,35Al0,65][Al3]O12	12,159	12,156	SS3-1,6	10,086
		1500	$G_{3-1,5}$	$[Yb_{2,97}Sc_{0,03}][Sc_{1,42}Al_{0,58}][Al_3]O_{12}$	12,170	12,171	SS _{3-1,5}	10,080
		1300	G3-1,3	[Yb2,97Sc0,03][Sc1,54Al0,46][Al3]O12	12,190	12,190	SS3-1,3	10,076
		1100	G3-1,1	[Yb3][Sc1,59Al0,41][Al3]O12	12,201	12,201	SS3-1,1	10,074
$S_{3'}$	Yb3Sc1,31Al3,69O12	≤1700	$G_{3-1,7}'$	[Yb2,99Sc0,01][Sc1,30Al0,70][Al3]O12	12,146	12,152	—	
S4	Y3Sc2Al3O12	1700	G4-1,7	[Y2,98Sc0,02][Sc1,95Al0,05][Al3]O12	12,328	12,329	SS4-1,7	10,174
		1600	$G_{4-1,6}$	$[Y_{2,98}Sc_{0,02}][Sc_{1,95}Al_{0,05}][Al_3]O_{12}$	12,332	12,329	SS4-1,6	10,171
		1500	G4-1,5	[Y2,98Sc0,02][Sc1,95Al0,05][Al3]O12	12,330	12,329	SS4-1,5	10,165
		1300	G4-1,3	[Y2,98Sc0,02][Sc1,95Al0,05][Al3]O12	12,335	12,329	SS4-1,3	10,283
		1100	G4-1,1	[Y2,98Sc0,02][Sc1,95Al0,05][Al3]O12	12,324	12,329	SS4-1,1	10,523
S_4'	$Y_{2,95}Sc_{1,9}Al_{3,15}O_{12}$	≤1700	$G_{4-1,7}'$	$[Y_{2,95}Sc_{0,05}][Sc_{1,85}Al_{0,15}][Al_3]O_{12}$	12,307	12,310	_	-
S 5	Yb _{2,1} Sc _{1,7} Al _{4,2} O ₁₂	1600	G5-1,6	[Yb2,16Sc0,84][Sc0,66Al1,34][Al3]O12	11,979	11,979	SS5-1,6	9,866
		1300	G5-1,3	$[Yb_{2,11}Sc_{0,89}][Sc_{0,78}Al_{1,22}][Al_3]O_{12}$	11,993	11,995	SS _{5-1,3}	9,864
S_6	$Y_2Sc_{1,9}Al_{4,1}O_{12}$	1600	G6-1,6	[Y2,03Sc0,97][Sc0,84Al1,16][Al3]O12	12,050	12,048	SS6-1,6	9,837
		1300	G6.13	[Y2 02Sc0 08][Sc0 04A]1 06][A]3][O12	12.067	12.063		_

Таблица 1. Составы исследуемых оксидных композиций YSAG и YbSA	AG
--	----

Х – параметры решетки не удалось точно идентифицировать или фаза была не полностью сформирована

Предельную концентрацию скандия в додекаэдрической позиции YSAG и октаэдрической позиции YSAG и YbSAG определяли аналогичным образом. Основное отличие оценки пределов растворимости скандия в октаэдрической позиции YSAG и YbSAG было обусловлено присутствием в исследуемых составах оксидных композиций S_3 и S_4 примесных фаз с кубической структурой SS_3 и SS_4 , представляющих собой твердые растворы $Yb_{2-x}Sc_xO_3$ и $Y_{2-x}Sc_xO_3$, соответственно (таблица 1). Данные о величине параметра решетки фаз SS_3 и SS_4 выступали в качестве дополнительного источника информации при проведении исследования.

Достоверность полученных результатов можно оценить на примере образца S_3 , синтезированного при температуре 1600 °С. Как видно из рис. 10, было достигнуто хорошее согласие между результатами моделирования рентгенограмм методом Ритвельда (I_{calc}) и экспериментальными данными (I_{obs}).

При одновременном внедрении скандия в обе позиции, как для *YSAG*, так и для *YbSAG*, общая растворимость скандия в гранате оказалась ниже предполагаемых значений (таблица 1). Кроме того, в большинстве случаев при синтезе составов с предельной концентрацией скандия в одной из подрешеток наблюдалось одновременное внедрение небольшого количества ионов скандия в другую подрешетку. Такое поведение характерно для обеих исследуемых систем и, вероятно, говорит о процессах самопроизвольной стабилизации катионного состава

подрешёток граната. На основании результатов исследований, представленных в четвертой главе было установлено, что погрешность определения содержания скандия в кристаллографических позициях не превышала ±2 ат.% для каждой из подрешеток граната. Основными источниками погрешности являлись инструментальная погрешность оборудования, дисперсия состава керамического материала и присутствие в гранате собственных дефектов.

Итоговые результаты проведенной оценки предельных концентраций скандия представлены на рис. 11 в виде схематического изображения монофазных областей *YbSAG* и *YSAG* для температур 1300 °C и 1600 °C.

Рис. 11 – Схематическое изображение области возможных составов *YbSAG* и *YSAG* при температурах 1300 °C и 1600 °C (составы оксидных композиций $S_I - S_6$ и гранатов $G_I - G_6$ приведены в таблице 1)

Различия при указанных температурах показывают, что области существования стабильных твердых растворов со структурой граната в системах Y_2O_3 - Al_2O_3 - Sc_2O_3 и Yb_2O_3 - Al_2O_3 - Sc_2O_3 сужаются с увеличением температуры. Предельная концентрация Sc^{3+} в додекаэдрической позиции граната уменьшается с ростом температуры как для *YbSAG*, так и для *YSAG*. В октаэдрической позиции *YbSAG* концентрация Sc^{3+} также снижается, а для *YSAG* не зависит от температуры и составляет 97,5 ± 2 ат.%. Общая концентрация Sc^{3+} при одновременном внедрении в обе позиции граната ниже, чем при легировании по одной из позиций, данная тенденция сохраняется при увеличении температуры синтеза.

Таким образом, на основании проведенных исследований было установлено, что в четырехкомпонентной системе Y_2O_3 - Al_2O_3 - Yb_2O_3 - Sc_2O_3 существует область

монофазных составов, ограниченная многогранником, вершины которого соответствуют *YAG*, *YbAG*, G_1 , G_2 , G_3 , G_4 , G_5 и G_6 . Однако, перспективными для создания оптически прозрачной керамики будут являться только те составы, которые стабильны при температуре, сопоставимой с температурой вакуумного спекания.

Глава 5 посвящена результатам исследования влияния концентрации скандия в решетке граната на спекаемость заготовок оптической керамики *YSAG:Yb* в диапазоне температур 1725 – 1850 °C. Составы исследованных образцов приведены в таблице 2.

В соответствии с таблицей 2, в образцах составов $K_1 - K_4$ общая концентрация скандия составляла 1 формульную единицу, а соотношение скандия в додекаэдрической и октаэдрической позициях граната различно. Образцы состава K_0 выступали в качестве образцов сравнения и характеризовались пониженной концентрацией скандия в решетке граната (0,38 формульных единиц, (ф.ед.)), что сопоставимо с составами керамических порошков и керамики, исследованных в рамках третьей главы.

			1	-	
Шифр	Исходиний состор	Φοροριτά σοστορ	Параметр решетки, а, Å		
образца	Исходный состав	Фазовый состав	Эксперимент	Расчет (а _{sv})	
K_0	$[Y_{2,52}Yb_{0,25}Sc_{0,23}][Sc_{0,15}Al_{1,85}]Al_3O_{12}$	100 % YSAG:Yb	12,012	12,008	
K_1	$[Y_{1,95}Yb_{0,25}Sc_{0,8}][Sc_{0,2}Al_{1,8}]Al_3O_{12}$	100 % YSAG:Yb	11,960	11,954	
K_2	$[Y_{2,15}Yb_{0,25}Sc_{0,6}][Sc_{0,4}Al_{1,6}]Al_3O_{12}$	100 % YSAG:Yb	12,014	12,009	
K_3	$[Y_{2,35}Yb_{0,25}Sc_{0,4}][Sc_{0,6}Al_{1,4}]Al_3O_{12}$	100 % YSAG:Yb	12,064	12,063	
K_4	$[Y_{2,55}Yb_{0,25}Sc_{0,2}][Sc_{0,8}Al_{1,2}]Al_3O_{12}$	100 % YSAG:Yb	12,118	12,117	

Таблица 2. Состав экспериментальных образцов при температуре 1600 °С

Как видно рис. 12. ИЗ 1725 °C температура оказалась недостаточной для полного прохождения процессов спекания всех исследуемых составов. Все образцы характеризовались высокой пористостью, светопропускание отсутствовало. При увеличении концентрации скандия B октаэдрической позиции граната режимы спекания, обеспечивающие достижение высокого оптического качества, смещались в область более высоких температур, в пользу чего свидетельствуют данные об изменении величин светопропускания керамики от температуры.

Рис. 12 – Внешний вид образцов *K*₀ – *K*₄ после спекания, шлифовки и полировки

Наилучшее светопропускание полученных образцов в видимом и ближнем ИК диапазоне составляло порядка 80 %, за исключением образца K_I , для которого диапазон возможных температур вакуумного спекания очень узок (рис. 13).

Рис. 13 – Светопропускание образцов составов *K*₀ – *K*₄ при длинах волн 400 нм и 1100 нм и спектры светопропускания образцов с наилучшим светопропусканием для каждого из составов (толщина образцов ~1 мм)

В целом, для исследуемых составов наблюдался экстремальный характер изменения оптического качества заготовок от температуры спекания. При превышении определенной температуры происходило резкое ухудшение оптических характеристик. Подобного рода эффекты были обнаружены для образца K_1 при 1800 °C и K_2 при 1850 °C (рис. 12).

Ухудшение оптического качества сопровождалось формированием полупрозрачного сильноокрашенного материала со средним размером зерен порядка сотен микрометров. Как показали исследования фазового состава, данный эффект связан с нестабильностью составов с большой концентрацией скандия в додекаэдрической позиции граната при высоких температурах и с их распадом на механическую смесь, состоящую из фазы *YSAG:Yb* с пониженной концентрацией скандия в додекаэдрической позиции граната, тем выше содержание скандия в додекаэдрической позиции граната, тем ниже температура распада твердого раствора.

В пользу распада твердого раствора на механическую смесь говорят результаты исследования образцов методами РЭМ и *EDX*. Как можно видеть (рис.14), в образце K_1 при 1775 °C уже начался распад твердого раствора. Состав его зерен соответствует гранату, а межзеренное пространство заполнено примесной фазой, состоящей преимущественно из скандия и алюминия.

Для образца состава K_3 при температуре 1850 °С наблюдалось частичное размягчение материала, выражающееся в формирования конусообразной формы заготовки. Такое же поведение было обнаружено для образцов K_1 и K_2 при температурах, предшествующих распаду твердого раствора. Таким образом, существует вероятность распада материала состава K_3 при более высоких температурах спекания.

Для образцов состава K_4 в исследуемом диапазоне температур признаков размягчения материала или распада твердого раствора зафиксировано не было. Поскольку данный состав сопоставим с известными монокристаллами *YSAG*, вероятнее всего материал может сохранять свою стабильность вплоть до температуры плавления.

На рис. 15 представлены данные величине теплопроводности 0 образцов $K_0 - K_4$. Анализ данных о теплофизических характеристиках образцов керамики показал, что положение скандия в решетке граната оказывает влияния не на теплопроводность образцов. В то же время разница в величине теплопроводности составов С концентрацией скандия 0,38 ф.ед. и 1 ф.ед. составляла до 15 %.

Рис. 15 – Теплопроводность образцов оптической керамики *YSAG:Yb*

Таким образом, в рамках данной главы была показана практическая возможность получения оптической керамики с содержанием скандия в додекаэдрической позиции граната в количестве от 0,2 до 0,8 ф.ед. Результаты демонстрируют, что технологии керамики имеют преимущество в изготовлении оптических материалов требуемого состава, по сравнению с технологиями выращивания монокристаллов. Более того, образцы *YSAG:Yb* с высокой концентрацией скандия в додекаэдрической позиции граната не могут быть получены в виде монокристаллов, так как подобного рода составы являются нестабильными при температурах кристаллизации из расплавов.

Основные результаты и выводы

1. На основе метода химического осаждения разработана методика синтеза нанопорошков *YSAG:Yb*. Синтезированные в соответствии с разработанной методикой керамические порошки характеризуются высокой химической и фазовой однородностью, малой степенью агломерации ($n \le 10$), обладают развитой поверхностью ($S_{BET} = 8 - 16 \text{ m}^2/\Gamma$). В рамках решения данной задачи были получены следующие научные и практические результаты:

– определено, что применение сульфата аммония при синтезе порошков оксигидратов из хлоридов в методе обратного соосаждения капельным способом

позволяет не только управлять величиной удельной площади поверхности в диапазоне 1,5 – 15 м²/г, но также способствует снижению содержания примесей хлора в керамических порошках до уровня ниже 0,05 ат.%, при концентрациях сульфата аммония в растворе солей 0,06 моль/л и более;

– обнаружено, что морфология агрегатов порошков оксигидратов полученных способом распыления, в отличие от образцов, синтезированных капельным способом, характеризуется более плотной структурой агрегатов. Для таких порошков применение сульфата аммония на стадии дезагрегации в качестве компонента размольной среды (0,2 моль/л), позволяет снизить концентрацию хлора до уровней ниже 0,05 ат.%;

– установлено, что для керамических порошков составов *YSAG:Yb*, синтезированных с применением сульфата аммония, в диапазоне температур 950 – 1200 °C происходят структурные изменения, связанные с процессами разложения оксисульфата иттрия и миграцией скандия из додекаэдрической в октаэдрическую позицию граната, которые выражаются в изменении величины параметра решетки. Наноразмерные керамические порошки ($d_{XRD} < 100$ нм) с малой степенью агломерации ($n \le 10$) для изготовления оптической керамики могут быть получены при прокаливании оксигидратов в диапазоне температур 1100 – 1200 °C при условии сохранения выбранной скорости нагрева (157 °C/час) и времени выдержки 2 часа.

2. На основании исследований оксидных композиций в системе Y₂O₃-Yb₂O₃рентгенофазового Al_2O_3 - Sc_2O_3 использованием методов С анализа И полнопрофильного анализа методом Ритвельда, а также посредством применения баланса масс и эмпирических формул для определения параметра решетки соединений со структурой граната разработана методика оценки фактического катионного состава гранатов со скандием в додекаэдрической и октаэдрической позициях иттрий-скандий-алюминиевого И иттербий-скандий-алюминиевого гранатов. Данная методика позволяет произвести оценку составов твердых растворов со структурой граната с доверительным интервалом ± 2 ат.%, в каждой из позиций.

3. С помощью разработанной методики оценены предельные концентрации *Sc*³⁺ в додекаэдрической и октаэдрической позициях граната в диапазоне температур 1100 – 1700 °C:

– установлено, что предельная концентрация Sc^{3+} в додекаэдрической позиции граната при температуре 1700 °С для *YbSAG* и для *YSAG* составляет ~ 64 ± 2 ат. %, что соответствует составам $[Yb_{1,03}Sc_{1,97}][Sc_{0,10}Al_{1,90}]Al_3O_{12}$ и $[Y_{1,08}Sc_{1,92}][Sc_{0,08}Al_{1,92}]Al_3O_{12}$

- обнаружено, что при температуре синтеза 1300 °С предельная концентрация скандия в додекаэдрических позициях *YbSAG* и *YSAG* составляет ~ 89 ± 2 ат.%, что соответствует составам [*Yb*_{0,32}*Sc*_{2,68}][*Sc*_{0,02}*Al*_{1,98}]*Al*₃*O*₁₂ и [*Y*_{0,32}*Sc*_{2,68}][*Sc*_{0,02}*Al*_{1,98}]*Al*₃*O*₁₂.

– определено, что в октаэдрической позиции *YbSAG* составы с предельной концентрацией скандия при температурах 1300 °C и 1700 °C могут быть записаны как $[Yb_{2,97}Sc_{0,03}][Sc_{1,54}Al_{0,46}]Al_3O_{12}$ и $[Yb_{2,92}Sc_{0,08}][Sc_{1,33}Al_{0,67}]Al_3O_{12}$, т.е. с повышением температуры предельная концентрация Sc^{3+} , при которой не происходит распада твердого раствора, снижается с 89,5 ± 2 ат.% (1300 °C) до 66,5 ± 2 ат.% (1700 °C).

– обнаружено, что предельная концентрация скандия в октаэдрической позиции *YSAG* не зависит от температуры синтеза и в исследуемом диапазоне температур составляет $97,5 \pm 2$ ат.%.

– на основании анализа оксидных композиций, принадлежащих системам Y_2O_3 - Al_2O_3 - Sc_2O_3 и Yb_2O_3 - Al_2O_3 - Sc_2O_3 было установлено, что в диапазоне составов $[Me_{3-max}Sc_{max}][Al_2]Al_3O_{12} - [Me_3][Al_{2-max}Sc_{max}]Al_3O_{12}$, где Me = Y или Yb, в исследуемом диапазоне температур не наблюдается существования непрерывного ряда твердых растворов. Предельная концентрация скандия в системах YSAG и YbSAG при одновременном легировании додекаэдрической и октаэдрической позиций граната понижается. При температуре 1300 °C составы синтезированных керамических порошков с предельной концентрацией скандия были установлены как $[Yb_{2,11}Sc_{0,89}][Sc_{0,78}Al_{1,22}]Al_3O_{12}$ и $[Y_{2,02}Sc_{0,98}][Sc_{0,94}Al_{1,06}]Al_3O_{12}$, а при температуре 1600 °C $[Yb_{2,16}Sc_{0,84}][Sc_{0,66}Al_{1,34}]Al_3O_{12}$ и $[Y_{2,03}Sc_{0,97}][Sc_{0,84}Al_{1,16}]Al_3O_{12}$.

4. По результатам вакуумного спекания заготовок оптической керамики различного состава в диапазоне температур 1725 – 1850 °С и исследования их характеристик установлено, что:

– концентрации скандия в додекаэдрической позиции YSAG:Yb ограничивает предельную температуру вакуумного спекания оптической керамики. При превышении данной температуры происходит распад твердого раствора YSAG:Yb на механическую смесь, состоящую из граната с пониженным содержанием скандия и обогащенную скандием примесную фазу, которая негативно влияет на оптические свойства керамики.

– для образцов с содержанием скандия в додекаэдрической позиции граната более 20 ат. % распад твердого раствора на механическую смесь был обнаружен при температурах менее 1850 °C.

5. Установлено, что теплопроводность образцов оптической керамики на основе твердых растворов $[Y_{2,75-x}Yb_{0,25}Sc_x][S_yAl_{2-y}]Al_3O_{12}$, где x + y=1 при комнатной температуре (25 °C) составляет 8,3 ± 0,3 Вт/(м·К) и не зависит от величины x. Увеличение концентрации скандия в решетке граната с x+y=0,38 до x + y = 1 приводит к снижению величины теплопроводности с 9,6 ± 0,3 Вт/(м·К) до 8,3 ± 0,3 Вт/(м·К).

6. С использованием керамических порошков, синтезированных в соответствии с разработанной методикой синтеза, в процессе вакуумного спекания были изготовлены образцы оптической керамики *YSAG:Yb* с различным соотношением скандия в додекаэдрической и октаэдрической позициях граната, характеризующиеся светопропусканием в видимом и ближнем ИК-дипазоне около 80% без учета полос поглощения иттербия. Впервые изготовлена керамика состава $Y_{2,15}Yb_{0,25}Sc_{1,0}Al_{4,6}Al_3O_{12}$ с содержанием скандия в додекаэдрической позиции граната 20 ат.%, что почти в два раза превышает концентрацию скандия в ранее известных составах керамик и монокристаллов *YSAG:Re*.

Список публикаций по теме диссертации

1. V.A. Tarala, **M.S. Shama,** I.S. Chikulina, S.V. Kuznetsov, F.F. Malyavin, D.S. Vakalov, A.A. Kravtsov, M.A. Pankov Estimation of Sc³⁺ solubility in dodecahedral and octahedral sites in YSAG:Yb // Journal of the American Ceramic Society, 102 (2019) 4862–4873. doi: 10.1111/jace.16294.

2. M.S. Nikova, V.A. Tarala, D.S. Vakalov, D.S. Kuleshov, A.A. Kravtsov, S.V.

Kuznetsov, I.S. Chikulina, F.F. Malyavin, L.V. Tarala, E.A. Evtushenko, V.A. Lapin, M.A. Pankov Temperature-related changes in the structure of YSAG:Yb garnet solid solutions with high Sc concentration // Journal of the European Ceramic Society, 39 (2019) 4946–4956. doi:10.1016/j.jeurceramsoc.2019.07.041.

3. F.F. Malyavin, V.A. Tarala, S.V. Kuznetsov, A.A. Kravtsov, I.S. Chikulina, **M.S. Shama**, E.V. Medyanik, V.S. Ziryanov, E.A. Evtushenko, D.S. Vakalov, V.A. Lapin, D.S. Kuleshov, L.V. Tarala, L.M. Mitrofanenko Influence of the ceramic powder morphology and forming conditions on the optical transmittance of YAG:Yb ceramics // Ceramics International, 45 (2019) 4418–4423. doi:10.1016/j.ceramint.2018.11.119.

4. A.A. Kravtsov, **M.S. Nikova**, D.S. Vakalov, V.A. Tarala, I.S. Chikulina, F.F. Malyavin, O.M. Chapura, S.O. Krandievsky, D.S. Kuleshov, V.A. Lapin Combined effect of MgO sintering additive and stoichiometry deviation on YAG crystal lattice defects // Ceramics International, 45 (2019) 20178–20188. doi:10.1016/j.ceramint.2019.06.287.

5. Способ уменьшения размеров частиц и степени агломерации на стадии синтеза исходных прекурсоров при получении алюмоиттриевого граната: пат. 2700074 Рос. Федерация: СЗОВ 29/28 (2006.01) / Голота А.Ф., Тарала В.А., Чикулина И.С., Малявин Ф.Ф., Шама М.С.; заявитель и патентообладатель Федеральное государственное автономное образовательное учреждение высшего образования «Северо-Кавказский федеральный университет» – № 2018112193; заявл. 04.04.2018; опубл. 12.09.2019, Бюл. № 26. – 13 с.

6. Однофазный поликристаллический иттрий-алюминиевый гранат, активированный эрбием, иттербием, и способ его получения: пат. 2705848 Рос. Федерация: С04В 35/44 (2006.01) / Голота А.Ф., Вакалов Д.С., Евтушенко Е.А., Кичук С.Н., Тарала Л.В., Малявин Ф.Ф., Прокопенко Л.Д., Чикулина И.С., Шама М.С.; заявитель и патентообладатель Российская Федерация, от имени которой выступает Фонд Перспективных Исследований – № 2018128755; заявл. 07.08.2018; опубл. 12.11.2019, Бюл. № 32. – 9 с.

7. **M.S. Nikova**, D.S. Vakalov, V.A. Tarala, I.S. Chikulina, F.F. Malyavin, M.G. Ambarcumov X-Ray Diffraction Analysis of YSAG:Yb Ceramic Powders with Different Stoichiometry // 8th International Conference on Materials Science (ICMS 2019): Advanced Research in Materials Science III: Solid State Phenomena, Vol. 310, 2020, pp. 1–5. doi:10.4028/www.scientific.net/SSP.310.1.

8. М.С. Никова, А.А. Кравцов, И.С. Чикулина, Ф.Ф. Малявин, В.А. Тарала, Д.С. Вакалов, Д.С. Кулешов, Л.В. Тарала, Е.А. Евтушенко, В.А. Лапин, Влияние сульфата аммония на характеристики нанопорошков и оптической керамики *YAG:Yb* // Научно-технический вестник информационных технологий, механики и оптики, Т. 19, № 3 (2019) с. 443–450. doi:.10.17586/2226-1494-2019-19-3-443-450.

9. М.С. Никова, И.С. Чикулина, А.А. Кравцов, В.А. Тарала, Ф.Ф. Малявин, Е.А. Евтушенко, Л.В. Тарала, Д.С. Вакалов, Д.С. Кулешов, В.А. Лапин, Е.В. Медяник, В.С. Зырянов, Синтез слабоагломерированных нанопорошков YAG:Yb для прозрачной керамики методом обратного соосаждения из хлоридов, Научно-технический вестник информационных технологий, механики и оптики. Т. 19. № 4 (2019) с. 630–640. doi:10.17586/2226-1494-2019-19-4-630-640.

10. F. F. Malyavin, V. A. Tarala, S. V. Kuznetsov, **M. S. Shama**, A. A. Kravtsov, I. S. Chikulina, A. F. Golota, E. V. Medyanik, V. S. Ziryanov, E. A. Evtushenko, D. S. Vakalov, V. A. Lapin, D. S. Kuleshov, A. V. Shtab, L. V. Tarala, L. M. Mitrofanenko

Estimation of Sc³⁺ solubility in dodecahedral and octahedral sites in YSAG:Yb. Influence of the precursor powder morphology and forming conditions on the high optical transmittance of YAG:Yb ceramics // 3rd German Polish Conference on Crystal Growth (GPCCG3) Poznan, Poland, 17-21 March 2019: Book of Abstracts, 2019, p. 33.

11. **М.С. Никова,** В.А. Тарала, Ф.Ф. Малявин, С.В. Кузнецов, Изготовление оптической керамики *YSAG:Yb* со *Sc*³⁺ в додекаэдрической и октаэдрической позициях кристаллической решетки граната / Оптика и спектроскопия конденсированных сред: материалы XXV Международной научной конференции (под науч. ред.В.А. Исаева, А.В. Лебедева) // Краснодар: Кубанский гос. ун-т., 2019: с. 379-384.

12. Ф.Ф. Малявин, И.С. Чикулина, **М.С. Никова**, А.А. Кравцов, В.С. Зырянов, Е.В. Медяник, Особенности компактирования керамических нанопорошков для изготовления оптически прозрачной керамики *YAG:Yb*, Проблемы и достижения в науке и технике / Сборник научных трудов по итогам международной научнопрактической конференции. № 6, г. Омск, НН: ИЦРОН, 2019: с. 42–44.

13. М.С. Шама, И.С. Чикулина, Ф.Ф. Малявин, Е.А. Евтушенко, Л.В. Тарала, Влияние сульфата аммония на примесный состав и удельную площадь поверхности нанопорошков *YAG:Yb* / Актуальные проблемы инженерных наук: материалы VI-й ежегодной научно-практической конференции преподавателей, студентов и молодых ученых Северо-Кавказского федерального университета «Университетская наука – региону» (г. Ставрополь 02-27 апреля 2018 г). – Ставрополь: ООО ИД «ТЭСЭРА», 2018. – с. 416-418.

14. И.С. Чикулина, **М.С. Шама**, А.А. Кравцов, Д.С. Вакалов, Д.С. Кулешов, Перспективы твердых растворов со структурой граната на основе *YAG:Yb* и *Sc*₂*O*₃ для получения оптически прозрачной керамики / Актуальные проблемы инженерных наук: материалы VI-й ежегодной научно-практической конференции преподавателей, студентов и молодых ученых Северо-Кавказского федерального университета «Университетская наука - региону» (г. Ставрополь 02-27 апреля 2018 г). – Ставрополь: ООО ИД «ТЭСЭРА», 2018. – с. 423-424.

15. И.С. Чикулина, **М.С. Шама,** Ф.Ф. Малявин, Е.А. Евтушенко, Л.В. Тарала, Влияние температурных режимов синтеза на удельную площадь поверхности и степень агломерации керамических порошков состава *YAG:Yb* / Актуальные проблемы инженерных наук: материалы VI-й ежегодной научно-практической конференции преподавателей, студентов и молодых ученых Северо-Кавказского федерального университета «Университетская наука – региону» (г. Ставрополь 02-27 апреля 2018 г). – Ставрополь: ООО ИД «ТЭСЭРА», 2018. – с. 426-428.

16. С.В. Кузнецов, В.А. Тарала, **М.С. Никова**, Ф.Ф. Малявин Влияние характеристик прекурсоров и условий прессования на оптическое пропускание *YSAG:Yb* керамик с различным содержанием скандия в додекаэдрических и октаэдрических позициях // Школа молодых ученых «Прохоровские чтения», Школа-конференция молодых ученых «Прохоровские чтения» (29 – 31 октября 2019 г., г. Москва): тезисы докладов. – Москва, 2019. – с. 52.