Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский технологический университет «МИСиС»

Середина Марина Андреевна

Влияние легирования на магнитные и транспортные свойства сплавов Гейслера Mn_2CoZ (Z = Al, Ga)

Шифр и наименование научной специальности 1.3.8 Физика конденсированного состояния

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

Научный руководитель д.ф.-м.н., доцент Ховайло Владимир Васильевич

Общая характеристика работы

Актуальность

История одного из самых интересных как по своим свойствам, так и по сферам применения класса среди металлических материалов началась в 1901 году после открытия Ф. Гейслером ферромагнитного поведения у сплава Cu₂MnAl, несмотря на то, что составляющие его элементы по отдельности такого поведения не демонстрируют. На данный момент существует более 1000 соединений, называемых сплавами Гейслера, и их число регулярно растет. Возрастающий интерес к данным сплавам объясняется тем, что свойства этих материалов можно сильно изменять путем варьирования их химического состава и/или заменой одного элемента другим [1, 2].

Многие сплавы Гейслера показывают все виды магнитного поведения и обладают многофункциональными магнитными свойствами, такими как магнитооптические, магнитокалорические и магнитоструктурные, среди сплавов Гейслера встречаются сплавы с памятью формы, которые демонстрируют такие уникальные свойства как сверхупругость, одно- и двухсторонний эффект памяти формы, а обнаруженное у них полуметаллическое ферромагнитное поведение позволяет использовать их в таком развивающемся направлении, как спинтроника [3, 4].

Инверсные сплавы Гейслера на основе Mn с общей формулой Mn₂YZ, где Y – переходный металл с валентностью, превышающей валентность Mn, a Z – элемент III–V групп таблицы Менделеева, обладают ферримагнитными свойствами. Это связано с тем, что два атома Mn при такой структурной конфигурации являются ближайшими соседями и обладают противоположно направленными спиновыми магнитными моментами, что приводит к появлению двух магнитных подрешеток.

Среди данных сплавов особое внимание уделяют полуметаллическим ферро- и ферримагнетикам, которые демонстрируют высокую спиновую поляризацию (достигающую 100 %) вблизи уровня Ферми [5]. Такие материалы являются перспективными для использования в спинтронных устройствах, например в устройствах c высокой плотностью. Вместе с магнитной записи ЭТИМ использование полуметаллических ферримагнетиков позволяет снижать размеры устройств.

Наряду с полуметаллическими соединениями перспективными для практического применения в качестве материалов для спинтронных устройств являются бесщелевые полупроводниковые соединения, имеющие нулевую ширину запрещенной зоны для электронов со спином «вверх» и щель для электронов со спином «вниз» на уровне Ферми. В этом случае достаточно небольшого количества энергии, чтобы возбудить электроны для перехода из валентной зоны в зону проводимости.

2

На данный момент ведется поиск и исследование новых соединений Гейслера. представляющих собой полностью скомпенсированные ферримагнетики и содержащих четыре элемента, три из которых – переходные металлы, а четвертый – немагнитный элемент главной группы. Синтез данных соединений происходит путем замещения того или иного элемента другим в тройных полуметаллических сплавах или спинбесщелевых полупроводниках или путем комбинирования двух известных тройных полуметаллических сплавов в пропорции 1:1. Факт полностью скомпенсированного состояния отражается в правиле Слейтера-Полинга, согласно которому суммарный магнитный момент в полуметаллических полных сплавах Гейслера, в которых X = Cr, Mn, можно найти по формуле $m_t = Z_t - 24$, где $Z_t -$ общее количество валентных электронов на элементарную ячейку. Благодаря устойчивости к внешним магнитным полям использование в устройствах подобных материалов может привести к значительному снижению энергопотерь [6].

Цель работы

Целью работы является установление влияния одновременного замещения марганца кобальтом и ванадием на магнитные и транспортные свойства ферримагнитных сплавов Гейслера Mn₂CoZ (Z = Al, Ga).

Задачи, решаемые в рамках поставленной цели:

1. Синтезировать соединения Mn₂CoZ (Z = Al, Ga) в виде массивных образцов и быстрозакаленных лент, исследовать их структурные, магнитные, транспортные и электронные свойства.

2. Теоретически исследовать влияние замещения атомов Co атомами V на структурные, электронные и магнитные свойства сплавов Mn_2CoZ (Z = Al, Ga).

3. Синтезировать соединения $Mn_{2-2x}Co_{0,5+x}V_{0,5+x}Ga$ (x = 0; 0,1; 0,2; 0,25; 0,3; 0,4; 0,5) и $Mn_{1,5}Co_{0,75}V_{0,75}Al$ в виде массивных образцов и быстрозакаленных лент.

4. Экспериментально исследовать влияние замещения Mn равным количеством кобальта и ванадия на свойства сплавов Mn-Co-V-Ga и Mn-Co-V-Al.

Научная новизна

1. Теоретические расчеты показали, что замена Со на V разрушает спинбесщелевое полупроводниковое состояние в Mn₂CoAl, а в соединении Mn₂CoGa приводит к исчезновению запрещенной зоны для электронных состояний со спином «вниз» и образованию псевдощелевого состояния.

2. Обнаружено полностью скомпенсированное состояние в быстрозакаленных лентах $Mn_{2-2x}Co_{0,5+x}V_{0,5+x}Ga$ (x = 0,2; 0,4) и $Mn_{1,5}Co_{0,75}V_{0,75}Al$, что подтверждено измерениями гальваномагнитных свойств.

3

3. Экспериментально установлено, что уменьшение содержания Mn в сплавах Mn_{2-2x}Co_{0,5+x}V_{0,5+x}Ga приводит к уменьшению температуры Кюри и смене характера удельного электросопротивления с металлического на полупроводниковый.

Практическая значимость работы

Результаты, полученные в рамках настоящей работы, с одной стороны, вносят вклад в решение фундаментальной проблемы в области спинтроники, связанной с установлением зависимости магнитных, транспортных и электронных свойств ферримагнитных сплавов Гейслера от их состава. С другой стороны, они могут быть использованы при выборе и создании материалов для спинтронных устройств, являющихся перспективными для практических применений. Результаты позволят использовать выявленные закономерности между свойствами не только для понимания природы сплавов Mn-Co-V-Ga(Al), но и других сплавов Гейслера.

Работа выполнена при поддержке Минобрнауки России в рамках государственного задания (код проекта 0718-2020-0037), гранта РНФ «Магнитные, транспортные и гальваномагнитные свойства тонких пленок и лент новых сплавов Гейслера для магнитных применений» (№16-42-02035, соглашение №16-42-02035).

Основные положения, выносимые на защиту:

1. Теоретические расчеты показали, что замещение атомов Со на V в сплавах Mn_2CoZ (Z = Al, Ga) приводит к изменению их электронной структуры. Для Mn_2CoAl спин-бесщелевое полупроводниковое состояние меняется на полуметаллическое. Для соединения Mn_2CoGa происходит исчезновение запрещенной зоны для состояний со спином «вниз», и формируется псевдощелевое состояние с плотностью электронных состояний на 2 порядка меньшей, чем такое же значение для состояний со спином «вверх».

 Изменение характера удельного электросопротивления Mn₂CoGa с металлического на полупроводниковый связано с образованием псевдощели.

3. Одновременное замещение марганца кобальтом и ванадием в образцах Mn_{2-2x}Co_{0,5+x}V_{0,5+x}Ga приводит к снижению температуры Кюри и абсолютных значений намагниченности вследствие сокращения числа обменных взаимодействий Mn(I)–Mn(II), Mn(II)–Co и V–Mn(II).

4. В образцах состава $Mn_{1,6}Co_{0,7}V_{0,7}Ga$, $Mn_{1,2}Co_{0,9}V_{0,9}Ga$ и $Mn_{1,5}Co_{0,75}V_{0,75}Al$ реализовано полностью скомпенсированное ферримагнитное состояние.

Достоверность полученных результатов

Достоверность определяется воспроизводимостью экспериментальных результатов, использованием сертифицированного оборудования при проведении экспериментов и согласием экспериментальных результатов с теоретическими расчетами.

Апробация работы

Результаты диссертационной работы были представлены на следующих научных мероприятиях:

1. International Baltic Conference on Magnetism (IBCM-2017) (20-24 августа, 2017, Светлогорск, Россия).

2. Международная конференция со школами и мастер-классами для молодых ученых «Химическая технология функциональных наноматериалов» (30 ноября – 1 декабря, 2017, Москва, Россия).

3. VI Междисциплинарный форум с международным участием «Новые материалы и перспективные технологии» (23-27 ноября, 2020, Москва, Россия).

4. Summit of Materials Science 2022 and GIMRT User Meeting 2022 (2-3 марта, 2022, Сендай, Япония).

5. IEEE Around-the-Clock Around-the-Globe Magnetic Conference (31 августа, 2022, виртуальная конференция).

Публикации

По материалам диссертации опубликовано 8 печатных работ, в том числе 3 статьи в журналах, проиндексированных в базе данных Web of Science, и 5 тезисов докладов в сборниках научных мероприятий.

Личный вклад

Постановка задач, обсуждение результатов проводились совместно с научным руководителем. Синтез образцов, исследование структурных свойств проводились при непосредственном участии автора, исследование транспортных и гальваномагнитных свойств, обработка результатов всех остальных экспериментов проводились автором лично. Подготовка материалов к публикациям проводилась совместно с научным руководителем.

Структура и объем работы

Материалы диссертации изложены на 102 страницах машинописного текста, содержат 63 рисунка, 15 таблиц. Диссертация состоит из введения, 5 глав, выводов и списка литературы, содержащего 170 источников.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во Введении отображена актуальность работы, сформулированы цели и задачи исследований, представлены основные положения, выносимые на защиту диссертационной работы.

В первой главе диссертации представлен аналитический обзор литературы, из которого была установлена перспективность применения сплавов Гейслера на основе Mn, особенно в таком развивающемся направлении как спинтроника. В литературном обзоре

отражена краткая историческая справка о сплавах Гейслера, рассказано об основных структурных, магнитных, транспортных свойствах сплавов Гейслера.

Тройные сплавы Гейслера X₂YZ могут кристаллизоваться в структуры типа Cu₂MnAl (L2₁) и Hg₂CuTi (XA). В случае структуры L2₁ (Fm $\overline{3}$ m, пространственная группа 225) атомы X занимают позиции A (0; 0; 0) и C (0,5; 0,5; 0,5), а атомы Y и Z – B (0,25; 0,25; 0,25) и D (0,75; 0,75; 0,75) соответственно. Обычно атомы X и Y – переходные металлы, Z – немагнитный элемент из групп IIIA – VA. В случае инверсной структуры XA (F $\overline{4}$ 3m, пространственная группа 216), которая является прототипом Cu₂MnAl, атомы X (0,5; 0,5; 0,5) меняются местами с атомами Y и встают на позиции (0,25; 0,25; 0,25) (рисунок 1). Атомы X становятся ближайшими соседями, что делает возможным наличие двух магнитных подрешеток в структуре и, следовательно, приводит к ферримагнитным свойствам соединений [7, 8].

Рисунок 1 – Типы кристаллических структур сплавов Гейслера Х₂YZ

В литературном обзоре также обращено внимание на особенности свойств сплавов Гейслера на основе Mn. Подробно рассмотрено происхождение правила Слейтера-Полинга и причины появления полуметаллических свойств в сплавах. Особое внимание уделено четырехкомпонентным сплавам и скомпенсированным ферримагнетикам.

Во второй главе представлены методики исследования, описан процесс синтеза экспериментальных образцов, перечислены входные данные и используемые методы теоретических вычислений.

Слитки с номинальным составом Mn₂CoGa были получены методом индукционной плавки с использованием индукционной печи MC 100 V (Indutherm, Германия) с последующим медленным охлаждением. Слитки с номинальным составом Mn₂CoAl, а также Mn_{2-2x}Co_{0,5+x}V_{0,5+x}Ga (x = 0; 0,1; 0,2; 0,25; 0,3; 0,4; 0,5) были получены методом индукционной плавки с последующей закалкой в медную изложницу. Индукционная плавка была произведена в инертной атмосфере аргона при максимальной температуре

~1500 °C в течение 5 минут. Слитки с номинальным составом Mn_{1,5}Co_{0,75}V_{0,75}Al были получены методом дуговой плавки в атмосфере аргона.

Слитки были использованы для спиннингования быстрозакаленных лент на установке Melt Spinner SC (Edmund Buhler GmbH, Германия). Основные параметры спиннингования были следующими: диаметр барабана – 22 см, ширина зазора между барабаном и соплом кварцевой ампулы – 200 мкм, давление в рабочей зоне – 0,5 атм (недостаток), давление в кварцевой ампуле – 0,7 атм (избыток), температура разливки для Mn₂CoGa составляла ~1500 °C, для Mn₂CoAl ~1450 °C, для Mn_{2-2x}Co_{0,5+x}V_{0,5+x}Ga ~1250 – 1300 °C и для Mn_{1,5}Co_{0,75}V_{0,75}Al – 1420 °C, скорость вращения медного барабана выбиралась в зависимости от состава слитков и варьировалась в диапазоне от 12 до 25 м/с. При изготовлении лент Mn_{2-2x}Co_{0,5+x}V_{0,5+x}Ga скорость вращения барабана уменьшалась по мере уменьшения Содержания Mn в образцах.

Исследования микроструктуры проводились с использованием методов энергодисперсионной спектроскопии и сканирующей электронной микроскопии (Tescan Vega 3, Tescan GmbH, Германия), просвечивающей электронной микроскопии (JEOL JEM-2100, JEOL Ltd., Япония), дифракционных методов (ДРОН-4, ЛНПО «Буревестник», Россия; MiniFlex 600, Rigaku, Япония).

Исследования транспортных и гальваномагнитных свойств были осуществлены с использованием четырехзондового метода на установке для измерения гальваномагнитных свойств (CRYOTEL, Россия) в температурном диапазоне от 80 до 400 К. Измерение транспортных свойств и коэффициента термоЭДС в температурном диапазоне от 80 до 700 К проводилось с использованием установки для измерения сопротивления и коэффициента термоЭДС с высокотемпературной вставкой (CRYOTEL, Россия).

Измерение магнитных свойств при низких температурах в температурном диапазоне 5 – 300 К проводись на установке для измерения физических свойств Physical Property Measurement System PPMS-9 (Quantum Design, США) и на установке для измерения магнитных свойств Magnetic Property Measurement System MPMS-5S (Quantum Design, США) (от 4,2 до 350 К). Экспериментальные поля достигали 50 кЭ. Измерение магнитных свойств в температурном диапазоне от 300 до 773 К проводились на вибрационном магнитометре Lakeshore VSM-7400 (Lake Shore Cryotronics, Inc., США).

Теоретические вычисления были проведены в рамках теории функционала плотности (DFT – density functional theory) с расчетами периодических граничных условий с использованием метода присоединенных плоских волн (PAW – projector augmented wave) и функционала Пердю–Бурке–Эрнзерхофа (PBE – Perdew-Burke-Ernzerhof) с помощью *ab initio* программы полной энергии и молекулярной динамики VASP (Vienna Ab initio Simulation Package). Все расчеты проводились с выборкой k-точек Монкхорста-

Пака 4×4×4 и энергией отсечки 500 эВ. Допуск сходимости для расчетов был выбран как разница полной энергии в пределах 10^{-6} эВ/атом. Для псевдопотенциалов использовали следующие электронные конфигурации: Mn ($3p^63d^54s^2$), Co ($3d^74s^2$), V ($3s^23p^63d^34s^2$), Ga ($3s^23p^{1}3d^{10}$), Al ($3s^23p^1$). Все расчеты проводились с использованием суперячеек $2\times2\times2$ структур XA и L2₁, состоящих из 128 атомов. Магнитные моменты рассчитывались с использованием формализма DDEC6.

В третьей главе представлены экспериментальные результаты исследования структурных, магнитных, транспортных и гальваномагнитных свойств быстрозакаленных лент сплавов Гейслера Mn₂CoZ (Z = Al, Ga).

В Разделе 1 описаны результаты по исследованию структуры и рентгенофазового анализа образцов. В таблице 1 представлен химический состав образцов.

Номинальный состав	Химический состав	Химический состав
образца	массивного образца	быстрозакаленной ленты
Mn ₂ CoAl	Mn2,04C00,94Al1,02	Mn _{2,01} Co _{1,03} Al _{0,96}
Mn ₂ CoGa	Mn1,99Co1,01Ga1,00	Mn _{2,07} Co _{1,00} Ga _{0,93}

Таблица 1 – Химический состав образцов Mn₂CoZ (Z = Al, Ga, Sn)

Рентгенофазовый анализ показал, что образцы имеют незначительное количество примесной фазы, как правило, не превышающее 5 %.

По данным рентгенофазового анализа были определены параметры решетки, равные a = 5,871 Å и a = 5,868 Å для слитков и быстрозакаленных лент Mn₂CoGa соответственно, параметры решетки для образцов Mn₂CoAl равнялись a = 5,862 Å и a = 5,858 Å для слитков и лент соответственно.

В Разделе 2 представлены результаты магнитных измерений образцов.

На рисунке 2 представлены температурные зависимости намагниченности M для образцов Mn₂CoGa и Mn₂CoAl в виде быстрозакаленных лент при приложении магнитного поля напряженностью 10 кЭ. При температуре T > 300 К намагниченность образца Mn₂CoGa демонстрирует аномалию при $T \approx 500$ К. Эта аномалия может возникать из-за взаимосвязи между двумя магнитными подрешетками ферримагнетика. При определенных условиях эта связь может привести к появлению точки компенсации в так называемых ферримагнетиках N-типа по классификации Нееля. Кривая намагниченности M(T) для состава Mn₂CoAl такого поведения не проявляет.

Рисунок 2 – Температурные зависимости удельной намагниченности *M* для Mn₂CoGa и Mn₂CoAl

Из температурных зависимостей намагниченности по первой частной производной по температуре определены температуры Кюри, которые составляют 728 К для соединения с Ga в качестве третьего элемента и 736 К для соединения с Al. Причиной высоких температур Кюри в этих соединениях являются сильные обменные взаимодействия между парами атомов Mn(A)–Mn(B) и M(B)–Co(C) [9].

Полевые зависимости намагниченности при 5 К представлены на рисунке 3.

Рисунок 3 – Полевые зависимости удельной намагниченности при T = 5 К для Mn₂CoGa и Mn₂CoAl

Из полевых зависимостей намагниченности при T = 5 К были вычислены величины суммарных магнитных моментов m_t . Они составляли 2,03 и 1,83 μ_b/ϕ .е. для Mn₂CoGa и Mn₂CoAl соответственно. Величины m_t для составов находятся в практически полном согласии с правилом Слейтера-Полинга, в соответствии с которым величина суммарного магнитного момента равна общему количеству валентных электронов в образце минус 24, что может говорить о полуметаллическом характере сплавов. Отклонения от целочисленных значений *m*^t могут говорить о присутствии небольшого количества примесных фаз или незначительном отклонении от стехиометрического состава.

В Разделе 3 представлены результаты измерений транспортных свойств образцов. Все сплавы данной системы демонстрируют нетипичные для металлов высокие значения удельного электросопротивления (рисунок 4).

Кривая $\rho(T)$ Mn₂CoGa имеет металлический характер в температурном интервале от 2 до 450 К. В низкотемпературной области кривая аппроксимируется как $\rho(T) = A + BT^{1/2} + CT^2 + DT^{9/2}$. При этом основной вклад в сопротивление до T = 19 К вносит слагаемое $BT^{1/2}$, связанное с электрон-электронным взаимодействием в присутствии беспорядка, затем до T = 200 К доминирует коэффициент при T^2 . Зависимость T^2 достаточно распространена для $\rho(T)$ ферромагнитных металлов и может быть связана как с электрон-электронным, так и с электрон-магнонным рассеянием, последнее должно отсутствовать в случае полуметаллических материалов [10]. При температурах выше 450 К кривая сопротивления приобретает полупроводниковый характер. Так как температура Кюри намного выше 450 К, данное поведение противоречит простой картине механизмов рассеяния носителей заряда в магнитоупорядоченных металлах, при которой вклад в общее сопротивление от рассеяния на магнонах возрастает вплоть до температуры Кюри. Отрицательный температурный коэффициент сопротивления выше 450 К может объясняться образованием псевдощели, как это было обнаружено для Fe_{1,98}V_{1,02}Al [11].

Сплав Mn₂CoAl имеют полупроводниковый характер электросопротивления во всем температурном диапазоне измерений, вид кривой соответствует его природе спинбесщелевого полупроводника, о чем будет сказано далее. Схожие зависимости удельного электросопротивления для данного состава наблюдались в работах [12, 13].

Рисунок 4 – Температурные зависимости удельного электросопротивления для Mn₂CoGa и Mn₂CoAl

В Разделе 4 представлены результаты гальваномагнитных измерений. Холловское сопротивление массивных образцов Mn_2CoGa в области высоких полей уменьшается с повышением температуры, но вместе с тем начиная с температуры 200 К происходит увеличение аномального вклада, о чем можно судить по увеличению наклона кривых в области слабых полей. Результаты исследования представлены на рисунке 5. Совместно с измерением сопротивления Холла были проведены исследования магнитосопротивления в той же геометрии образца. Полученные результаты позволили исключить влияние магнитосопротивления, так как его порядок был в 10^4 меньше, чем порядок абсолютного изменения холловского сопротивления. Была произведена грубая оценка для нормального коэффициента Холла, его величина имеет порядок ~ 10^{-2} , что соответствует концентрации носителей заряда тока ~ 10^{20} см⁻³. Данные значения, так же, как и температурная зависимость нормального коэффициента Холла, являются типичными для 3d–металлов. Результаты представлены на рисунке 6.

Рисунок 5 – Полевые зависимости холловского сопротивления массивных образов Mn₂CoGa

Рисунок 6 – Температурная зависимость нормального R₀ коэффициента Холла для массивных образцов Mn₂CoGa

Величины холловского сопротивления быстрозакаленных лент Mn₂CoAl увеличиваются с понижением температуры, достигая 55 мкОм·см при температуре 80 К (см. рисунок 7). Вид кривых позволяет сделать вывод о доминирующей роли дырочной проводимости носителей заряда. Коэффициенты аномального эффекта Холла, вычисленные с помощью графического метода, практически не зависят от температуры и колеблются в районе 1,28±0,04 см³/Кл (см. вставку на рисунке 7).

Рисунок 7 – Полевые зависимости холловского сопротивления и температурная зависимость аномального коэффициента Холла (на вставке) для быстрозакаленных лент Mn₂CoAl

В четвертой главе представлены результаты теоретических расчетов для соединений Mn₂CoZ (Z = Al, Ga) с замещением кобальта на ванадий.

В Разделе 1 рассмотрены теоретические расчеты структурных свойств соединений $Mn_2Co_{1-x}V_xZ$ (Z = Al, Ga; x = 0; 0,25; 0,5; 0,75; 1). Сравнение энергий основного состояния $\Delta E = E(L2_1) - E(XA)$ рассматриваемых кристаллических модификаций соединений $Mn_2Co_{1-x}V_xZ$ (см. рисунок 8) показало наличие фазового перехода вблизи x = 0,5. При малых значениях x структура XA более энергетически выгодна, а структура L2₁ более стабильна при высоких концентрациях V. Этот результат хорошо согласуется с экспериментальными данными.

Рисунок 8 – Различие энергий основного состояния соединений Mn₂Co_{1-x}V_xZ для структур ХА и L2₁ в зависимости от концентрации V

С одной стороны, замена атомов Со на V приводит к увеличению степени ковалентности химических связей в сплавах Гейслера, стабилизируя кристаллическую структуру. С другой стороны, сильная полярность ковалентной связи атомов V с соседними атомами приводит к дестабилизации кристаллической структуры. Реализованные кристаллические структуры являются результатом компромисса между этими двумя тенденциями.

В Разделе 2 представлены результаты расчета средних значений магнитных моментов на атомах различных типов в сплавах Гейслера $Mn_2Co_{1-x}V_xZ$ (Z = Ga, Al) для структур L2₁ и XA.

Практически полная компенсация магнитного момента была достигнута в составах $Mn_2Co_{0,5}V_{0,5}Z$ (Z = Al, Ga) для случая структуры XA. Компенсированный магнитный момент для этих сплавов составляет 0,06 $\mu_{\rm b}/\phi$.е. Рассчитанные значения магнитных моментов для сплавов со структурой XA соответствуют значениям, рассчитанным по правилу Слейтера-Полинга.

Расчетные значения суммарных магнитных моментов для структур XA и L2₁ приведены в таблице 2.

Таблица 2 – Рассчитанные суммарные магнитные моменты для структур L2₁ и XA для сплавов Гейслера Mn₂Co_{1-x}V_xZ (Z = Ga, Al). (a) – настоящая работа; б – правило Слейтера-Полинга; (в) – теоретические данные [14]

Ζ	X	Суммарный магнитный момент на формульную		
		единицу, µ _Б /форм.ед.		
		Структура ХА	Структура <i>L</i> 2 ₁	
Ga	0	$2,00^{(a)}, 2^{(6)}, 1,99^{(B)}$	7,71 ^(a) , 7,68 ^(B)	
	0,25	$1,00^{(a)}, 1^{(6)}$	6,43 ^(a)	
	0,5	$0,06^{(a)}, 0^{(6)}$	4,73 ^(a)	
	0,75	$1,05^{(a)}, 1^{(6)}$	3,36 ^(a)	
	1	$2,01^{(a)}, 2^{(6)}$	1,98 ^(a)	
Al	0	$2,00^{(a)}, 2^{(6)}$	7,44 ^(a)	
	0,25	$1,00^{(a)}, 1^{(6)}$	5,99 ^(a)	
	0,5	$0,06^{(a)}, 0^{(6)}$	4,56 ^(a)	
	0,75	$0,93^{(a)}, 1^{(6)}$	3,11 ^(a)	
	1	$1,94^{(a)}, 2^{(6)}$	2,00 ^(a)	

В Разделе 3 представлены результаты расчетов электронной структуры для сплавов Гейслера $Mn_2Co_{1-x}V_xZ$ (Z = Ga, Al) для структуры типа XA в зависимости от величины содержания V.

Согласно расчетам, Mn₂CoGa – полуметалл, в то время как Mn₂CoAl – спиновый бесщелевой полупроводник (SGS), что согласуется с предыдущими исследованиями [13, 14]. Замена Со на V разрушает SGS-состояние Mn₂CoAl и его электронная структура становится полуметаллической. При увеличении содержания V до 0,5 плотность электронных состояний (ПЭС) со спином «вверх» вблизи уровня Ферми увеличивается и формируется за счет электронных состояний на атомах Mn1, Mn2 и V. При этом увеличивается доля состояний вблизи E_F на атомах V.

В соединении Mn_2CoGa замена Со на V приводит к исчезновению запрещенной зоны для состояний со спином «вниз» и формированию псевдощелевого состояние с ПЭС на 2 порядка меньшей, чем такое же значение для состояний со спином «вверх». С ростом х минимум ПЭС при x = 0 вблизи уровня Ферми постепенно сменяется пиком. ПЭС вблизи уровня Ферми для состояний со спином вверх, как и в случае Mn_2CoAl , формируются состояниями на атомах Mn1, Mn2 и V с увеличением доли состояний на атомах V с увеличением х. Во всех рассмотренных случаях энергетическая щель для состояний со спином вниз при замене атомов Со на V заполняется d-состояниями на атомах Mn1 и V.

В пятой главе рассмотрены результаты работы по исследованию влияния одновременного замещения Mn кобальтом и ванадием на магнитные и транспортные свойства сплавов Mn-Co-V-Ga и Mn-Co-V-Al.

В Разделе 1 представлены результаты по определению химического состава и ренгтенофазового анализа образцов.

Для всех образцов в виде лент системы Mn-Co-V-Ga были рассчитаны суммарные значения количества валентных электронов, которые находятся в диапазоне 23,96 – 24,08. Таким образом, выполняется одно из условий возможности достижения скомпенсированного состояния для полуметаллических сплавов Гейслера с X = Mn, которое заключается в следовании правилу Слейтера-Полинга $m_t = Z_t - 24$. Химический состав слитков и лент и суммарное количество валентных электронов Z_t для лент сплавов Гейслера Mn_{2–2x}Co_{0,5+x}V_{0,5+x}Ga (x = 0; 0,1; 0,2; 0,25; 0,3; 0,4; 0,5) представлены в таблице 3.

Рентгенофазовый анализ подтвердил однофазность образцов. Параметр решетки, вычисленный из дифракторамм по закону Брэгга, уменьшается с уменьшением содержания Mn, т.е. уменьшается от Mn₂Co_{0.5}V_{0.5}Ga до стехиометрического MnCoVGa. Величины параметров решетки для быстрозакаленных лент представлены в таблице 4. Четырехкомпонентные сплавы Гейслера кристаллизуются в структурный тип LiMgPdSn (F43m, пространственная группа 216), таким образом, изменение стехиометрии приводит к постепенному упорядочению кристаллической структуры, что в совокупности с разницей в атомных радиусах приводит к уменьшению параметра решетки.

Таблица	3 –	Химический	состав	слитков	И	лент	И	суммарное	количество	валентных
электрон	ов Z _t	для лент спла	вов Гей	іслера Mr	1 2–2	$e_x Co_{0,5}$	$+_{x}$	$V_{0,5+x}$ Ga (x =	0; 0,1; 0,2; 0	,25; 0,3; 0,4
0,5)										

Х	Номинальный состав слитка	Реальный химический состав слитка	Реальный химический состав ленты	Z _t для ленты
0	$Mn_2Co_{0.5}V_{0.5}Ga$	Mn _{2,02} Co _{0,49} V _{0,50} Ga _{0,99}	Mn _{2,02} Co _{0,50} V _{0,47} Ga _{1,01}	24,08
0,1	Mn _{1,8} Co _{0,6} V _{0,6} Ga	Mn _{1,81} Co _{0,59} V _{0,59} Ga _{1,01}	Mn _{1,81} Co _{0,60} V _{0,58} Ga _{1,01}	23,96
0,2	Mn1,6C00,7V0,7Ga	Mn1,63C00,70V0,68Ga0,99	$Mn_{1,64}Co_{0,70}V_{0,66}Ga_{1,00}$	24,08
0,25	Mn1,5C00,75V0,75Ga	$Mn_{1,50}Co_{0,71}V_{0,76}Ga_{1,03}$	$Mn_{1,49}Co_{0,75}V_{0,76}Ga_{1,00}$	23,98
0,3	Mn1,4C00,8V0,8Ga	$Mn_{1,41}Co_{0,76}V_{0,80}Ga_{1,03}$	$Mn_{1,42}Co_{0,80}V_{0,78}Ga_{1,00}$	24,04
0,4	Mn _{1,2} Co _{0,9} V _{0,9} Ga	Mn _{1,20} Co _{0,90} V _{0,89} Ga _{1,01}	Mn _{1,20} Co _{0,91} V _{0,90} Ga _{0,99}	24,06
0,5	MnCoVGa	Mn _{1,01} Co _{0,99} V _{1,02} Ga _{0,98}	Mn _{1,00} Co _{0,99} V _{1,02} Ga _{0,99}	23,98

ПЭМ-изображения для лент $Mn_{1,8}Co_{0,6}V_{0,6}Ga$, представленные на рисунке 9, демонстрируют наличие в образцах антифазных доменов, что также говорит о сверхструктурном упорядочении. Антифазные домены могут присутствовать не в каждой упорядоченной структуре, но если они присутствуют, значит структура упорядочена, так как их образование энергетически выгодно для системы, поскольку связано с понижением симметрии.

Рисунок 9 – ПЭМ-изображения для лент $Mn_{1,8}Co_{0,6}V_{0,6}Ga$

Химический состав массивных образцов И быстрозакаленных лент Mn_{1.5}Co_{0.75}V_{0.75}Al составлял Mn_{1.49}Co_{0.74}V_{0.67}Al_{1.10} и Mn_{1.51}Co_{0.76}V_{0.69}Al_{1.04} соответственно. Суммарное количество валентных электронов было равно для массивных образцов -23,74, для лент – 23,98. Рентгенофазовый анализ показал, что образцы Mn_{1.5}Co_{0.75}V_{0.75}Al и в виде слитков, и в виде быстрозакаленных лент являются однофазными с параметрами решеток 5,8202 Å и 5,8232 Å для слитков и лент соответственно. Результаты просвечивающей электронной микроскопии для лент Mn_{1.5}Co_{0.75}V_{0.75}Al показали наличие антифазных доменов в образцах (см. рисунок 10), так же как и в образцах системы Mn-Co-V-Ga, что говорит о сверхструктурном упорядочении. Формы доменов для систем Mn-Co-V-Ga и Mn-Co-V-Al отличаются. По электронограмме можно исключить единственность разупорядочения В2, так как помимо основной сетки индексов ((000), (202), (0-40) и другие) присутствуют сверхструктурные ((111), (-1-1-1), (1-11) и другие).

Рисунок 10 – ПЭМ-изображения для лент $Mn_{1,5}Co_{0,75}V_{0,75}Al$ при комнатной температуре

В Разделе 2 представлены результаты магнитных измерений синтезированных образцов Мп_{2-2x}Co_{0,5+x}V_{0,5+x}Ga. На рисунке 11(а) представлены температурные

зависимости намагниченности для лент в температурном диапазоне 5 – 750 К при приложении поля напряженностью 5 кЭ. Значения удельной намагниченности для наглядности и лучшего понимания были переведены в $\mu_{\rm b}$. Две неравные магнитные подрешетки в соединениях приводят к сложному виду кривых M(T). Для соединений х = 0,2 и х = 0,4 обнаружены полностью скомпенсированные состояния с остаточными магнитными моментами 0,004 $\mu_{\rm b}/\phi$.е. и 0,003 $\mu_{\rm b}/\phi$.е. соответственно, наличие остаточной намагниченности может быть вызвано атомным беспорядком и/или наличием небольшого количества примеси.

Для соединения MnCoVGa (x = 0,5) достижение скомпенсированного состояния невозможно, теоретически данный сплав является немагнитным, в котором атомы Mn преимущественно занимают позиции C (0,5; 0,5; 0,5). В случае, если часть атомов Mn занимает позиции B (0,25; 0,25; 0,25) и D (0,75; 0,75; 0,75) структурного типа LiMgPdSn, то возникает незначительная остаточная величина магнитного момента. При увеличении содержания Mn все большее число атомов Mn переходит в позиции B и/или D, которые становятся ближайшим соседом атома Co (0, 0, 0), что дает ненулевой магнитный момент. В нашем случае слабо выраженное скомпенсированное состояние наблюдалось уже для состава Mn_{1,2}Co_{0,9}V_{0,9}Ga.

Рисунок 11 – Температурные зависимости намагниченности лент сплавов Гейслера Mn_{2-2x}Co_{0,5+x}V_{0,5+x}Ga (x = 0; 0,1; 0,2; 0,25; 0,3; 0,4; 0,5)

В соединениях $Mn_{1,2}Co_{0,9}V_{0,9}Ga$ (x = 0,4) и MnCoVGa (x = 0,5) суммарный магнитный момент непрерывно уменьшается при нагреве от 5 K до температуры Кюри (рисунок 11(a)). В соединении $Mn_{1,2}Co_{0,9}V_{0,9}Ga$ намагниченность при 5 K равна 0,047 $\mu_{\rm b}/\varphi$.е., затем происходит ее ускоренное уменьшение до 0,042 $\mu_{\rm b}/\varphi$.е. при 67 K и последующее медленное уменьшение с увеличением температуры, достигая значения

0,003 µ_Б/ф.е. при температуре примерно 320 К, затем намагниченность уменьшается вплоть до температуры Кюри, равной 351 К.

Для скомпенсированного $Mn_{1,6}Co_{0,7}V_{0,7}Ga$ (x = 0,2) ситуация отличается. Суммарный магнитный момент при T = 5 K равен 0,024 µ_Б/f.u., он быстро понижается до 0,008 µ_Б/ф.е. при 70 K, а затем медленно понижается до 0,004 µ_Б/ф.е. при 147 K, затем происходит рост магнитного момента до значения 0,137 µ_Б/ф.е. и дальнейшее снижение вплоть до температуры Кюри $T_C = 544$ K.

Общим для всех составов, за исключением MnCoVGa, является наличие низкотемпературной области, в которой происходит ускоренное снижение намагниченности примерно до 70 К (рисунок 11(б)), а затем либо постепенное снижение до температуры компенсации, как в образцах с x = 0,2 и x = 0.4, или же постепенный рост, как в образцах с x = 0, 0,1, 0,25, 0,3. Наличие локального минимума в низкотемпературной области не позволяет отнести ферримагнетики с x = 0 - 0,3 к классическим ферримагнетикам Р-типа по классификации Нееля.

Отчетливое изменение наклона кривых намагниченности можно объяснить спинпереориентационным переходом. Такой эффект наблюдался в тетрагональных соединениях Mn₂PtSn [15] и Mn₂RhSn [16] с неколлинеарным магнитным упорядочением, а также в кубическом Ru₂MnSb [17] с антиферромагнитным упорядочением. К настоящему моменту не сообщалось о спин-переориентационном переходе в сплавах Гейслера на основе Mn₂- с кубической симметрией.

Величина магнитного момента для соединений с x = 0, 0,1, 0,25, 0,3, при T = 5 K равна 0.087, 0.085, 0.072 и 0.037 $\mu_{\rm b}/\phi$.е. соответственно. Стоит отметить уменьшение абсолютных значений намагниченности в образцах при уменьшении содержания марганца.

Температура бифуркации кривых ZFC-FC практически одинакова и составляет около 55 К для составов с x = 0 - 0,3, а для составов с x = 0,4 и x = 0,5 температура бифуркации снижается до 46 К (рисунок 11(б)).

Вычисленные по первой производной намагниченности по температуре значения точек Кюри представлены в таблице 4. Наблюдается отчетливое снижение температуры Кюри с уменьшением содержания марганца в образцах.

В общем случае по правилу заполнения атомы с наибольшей валентностью предпочитают занимать позиции C(0,5; 0,5; 0,5), атомы с меньшей валентностью – позиции A(0; 0; 0), затем B(0,25; 0,25; 0,25).), и, наконец, атомы элементов основной группы Z с наименьшей валентностью занимают позиции D(0,75; 0,75; 0,75). Из общих соображений в соединении Mn₂Co_{0,5}V_{0,5}Ga атомы занимают следующие позиции: MnI – A, MnII – 0,5C и 0,5B, Co – 0,5C, V – 0,5B и Ga – D. В идеальном случае могут реализовываться обменные взаимодействия, наиболее сильно влияющие на магнитные

свойства: антиферромагнитные MnI(0,5A)-MnII(0,5B), ферромагнитные MnII(0,5B)-Со(0,5С) и антиферромагнитные V(0,5В)-МпII(0,5С) взаимодействия. В случае соединения Mn_{1.8}Co_{0.6}V_{0.6}Ga число парных взаимодействий уменьшается и составляет 0,4 для MnI-MnII, 0,4 для MnII-Co и 0,4 для V-MnII. В эксперименте температура Кюри, как и абсолютное значение намагниченности, уменьшается. Соединение MnCoVGa согласно теоретическим расчетам кристаллизуется в структуру LiMgPdSn; при этом атомы Mn занимают позиции C, атомы Co занимают позиции A, V, атомы B и атомы Ga D. Ковалентная p-d-гибридизация происходит между электронами на 3d-орбитали атомов Mn/Co и электронами на 4р-орбитали Ga, это приводит к тому, что соединение оказывается немагнитным [18]. Если не учитывать структуру LiMgPdSn, то для соединения Mn_{1.2}Co_{0.9}V_{0.9}Ga будут MnI(0,1A)-MnII(0,1B), MnII(0,1B)-Co(0,1C) и V(0,1B)-MnII(0,1С) взаимодействия. Однако по мере уменьшения содержания Mn и приближения к стехиометрическому MnCoVGa все большее число атомов Mn и Co переходят в положения А и С соответственно. Таким образом, количество указанных парных взаимодействий уменьшается интенсивнее. Этим можно попытаться объяснить ускоренное снижение магнитных свойств при каждом последующем уменьшении содержания Mn в образцах. Конечно, эти предположения не учитывают всех возможных типов беспорядка, а дают лишь поверхностное представление о взаимодействиях.

Поведение полевых кривых намагниченности М(Н) хорошо согласуется с кривыми M(T) в низкотемпературной области. При температурными величине напряженности приложенного магнитного поля 5 кЭ минимальное значение намагниченности относится к составу Mn_{1,6}Co_{0,7}V_{0,7}Ga, в котором наблюдается скомпенсированное состояние в низкотемпературной области. Также этот состав имеет наибольшую величину коэрцитивной силы $H_C = 3350$ Э. Более того, Mn_{1.6}Co_{0.7}V_{0.7}Ga не выходит на насыщение даже при 50 кЭ, что может говорить о большой магнитной анизотропии. В остальных составах, кроме x = 0,3, величина H_C , связанная с различной силой обменной связи для различных магнитных подрешеток, уменьшается с уменьшением содержания Mn. Значения H_C для всех исследованных составов Mn₂₋ _{2x}Co_{0.5+x}V_{0.5+x}Ga, определенные из полевых зависимостей намагниченности, представлены в таблице 4.

19

Таблица 4 — Параметры решетки, температура Кюри и коэрцитивная сила для быстрозакаленных лент сплавов Гейслера $Mn_{2-2x}Co_{0.5+x}V_{0.5+x}Ga$ (x = 0, 0.1, 0.2, 0.25, 0.3, 0.4, 0.5)

	Параметр	<i>T</i> _C , K	<i>H</i> _C при 5 К,
<i>X</i>	решетки, А	62.4	<u> </u>
0	5,8751	634	1080
0,1	5,8598	600	930
0,2	5,8444	544	3350
0,25	5,8306	468	390
0,3	5,8294	442	910
0,4	5,8159	351	310
0,5	5,8118	122	105

Свойства скомпенсированных ферримагнетиков очень чувствительны к химическому составу. На рисунке 12 представлены полевые кривые для T = 50 К и T = 300 К двух образцов с одинаковым номинальным химическим составом лент с x = 0,5 ($Mn_{2,02}Co_{0,50}V_{0,47}Ga_{1,01}$ и $Mn_{1,97}Co_{0,51}V_{0,50}Ga_{1,02}$). В случае заниженного содержания V абсолютные величины намагниченности ниже, таким образом выше вероятность скомпенсированного состояния.

Рисунок 12 – Полевые зависимости намагниченности для быстрозакаленных лент сплавов Гейслера $Mn_2Co_{0,5}V_{0,5}Ga$ с различным реальным химсоставом при T = 50 К и T = 300 К

Скомпенсированное состояние было обнаружено для лент $Mn_{1,5}Co_{0,75}V_{0,75}Al$ (см. рисунок 13). Температурная кривая намагниченности имеет вид, типичный для ферримагнетиков N-типа по классификации Нееля. Температура компенсации составляла $T_{комn} = 396$ K, что делает данный состав перспективным для практических применений. Так же, как и для образцов Mn-Co-V-Ga, остаточная намагниченность может быть вызвана

атомным беспорядком и/или наличием небольшого количества примеси. Для массивных образцов скомпенсированное состояние отсутствовало.

Рисунок 13 – Температурные зависимости намагниченности для массивных образцов и быстрозакаленных лент сплавов Гейслера Mn_{1,5}Co_{0,75}V_{0,75}Al при *H* = 5 кЭ

Для всех скомпенсированных ферримагнетиков наблюдается схожая картина поведения коэрцитивной силы, до наступления температуры компенсации H_C растет, а после перехода через точку компенсации резко начинает падать, наглядно это можно видеть на рисунке 14, на котором видно, что для лент Mn_{1,5}Co_{0,75}V_{0,75}Al величина H_C уже при 400 К (всего на 4 градуса выше $T_{\kappa o M n}$) ниже H_C при 250 К. Именно рост H_C экспериментально может указывать на приближение к точке компенсации в скомпенсированных ферримагнетиках, даже если в образцах присутствует остаточный магнитный момент из-за неточного химсостава или атомного беспорядка.

Рисунок 14 – Полевые зависимости намагниченности для быстрозакаленных лент сплава Гейслера Mn_{1,5}Co_{0,75}V_{0,75}Al

В Разделе 3 представлены результаты измерения удельного электросопротивления образцов. На рисунке 15 представлены температурные зависимости

электросопротивления для образцов $Mn_{2-2x}Co_{0.5+x}V_{0.5+x}Ga$ (x = 0; 0,1; 0,2; 0,25; 0,3; 0,4; 0,5) и лент $Mn_{1,5}Co_{0,75}V_{0,75}Al$. Для образцов x = 0 – 0,3 во всем измеряемом температурном диапазоне наблюдается металлический ход удельного электросопротивления, причем чем ниже содержание Mn, тем ниже его температурный коэффициент, таким образом с понижением содержания Mn снижается вклад в сопротивление от электрон-фононного рассеяния. При пересечении температуры Кюри в образце x = 0,4 сопротивление меняет ход на полупроводниковый. Аналогичная картина для теоретически немагнитного MnCoVGa (x = 0,5), при котором полупроводниковый ход наблюдается после 150 K, в идеальном варианте при полном упорядочении структуры по LiMgPdSn-типу стоит ожидать полупроводникового хода на всем измеряемом диапазоне. Величины удельного электросопротивления имеют порядок 10^2 мкОм·см для всех составов, максимальное значение электросопротивления наблюдается у MnCoVGa (355 мкОм·см при 80 K), кроме того, сопротивление данного состава слабо зависит от температуры.

В отличие от $Mn_{1,5}Co_{0,75}V_{0,75}Ga$ сопротивление для $Mn_{1,5}Co_{0,75}V_{0,75}Al$ имеет полупроводниковый ход на всем измеряемом промежутке температур (от 5 до 415 K). Вычисленная концентрация носителей заряда на элементарную ячейку не превышала 0,1 шт. в основном состоянии, а ее зависимость $n_{R^{4}}(T)$ имела выраженный положительный температурный коэффициент во всем диапазоне измерений. Можно сделать вывод, что $Mn_{1,5}Co_{0,75}V_{0,75}Al$ является полуметаллом. Таким образом, частичное замещение атомов Мn атомами Co и V не разрушает полуметаллическое поведение сплава.

Рисунок 15 – Температурные зависимости удельного электросопротивления для быстрозакаленных лент сплавов Гейслера Mn_{2-2x}Co_{0.5+x}V_{0.5+x}Ga (слева) и Mn_{1,5}Co_{0,75}V_{0,75}Al (справа)

В Разделе 4 описаны результаты измерения эффекта Холла в температурном диапазоне от 85 до 400 К для образцов, в которых было обнаружено скомпенсированное состояние. Данные эксперименты позволяют судить о превалировании той или иной

магнитной подрешетки и даже в случае остаточного магнитного момента в образцах более точно определить температуру компенсации. По кривым холловского сопротивления были уточнены температуры компенсации, которые составляли 130 K, 317,5 K и 396 K для Mn_{1,6}Co_{0,7}V_{0,9}Ga, Mn_{1,2}Co_{0,9}V_{0,9}Ga и Mn_{1,5}Co_{0,75}V_{0,75}Al соответственно.

По результатам исследования эффекта Холла в образце Mn_{1,8}Co_{0,6}V_{0,6}Ga можно заключить, что перегиб в низкотемпературной области в данной системе сплавов не имеет отношения к скомпенсированному поведению.

В Разделе 5 рассчитана электронная структура для сплавов $Mn_{2-2x}Co_{0.5+x}V_{0.5+x}Ga$ (x = 0; 0,25; 0,5). В качестве исходной использовалась ранее изученная решетка $Mn_2Co_{0.5}V_{0.5}Ga$ со структурой XA, соответствующая x = 0,5. При замещении атомов Mn1 и Mn2 атомами Co и V система переходит в металлическое состояние. Более того, если магнитный момент системы в расчете на формульную единицу при x = 0,5 составлял 0,06 $\mu_{\rm b}$, то при x = 0,25 и x = 0 это значение составляет 0,98 $\mu_{\rm b}$ и 0,92 $\mu_{\rm b}$ соответственно.

Стоит отметить, что данные теоретических расчетов не согласуются с полученными результатами магнитных измерений. Причиной этого может быть сложность в задании параметров расчета, так как в сплавах Гейслера оккупирование атомом той или иной позиции зачастую зависит от его валентности. В этом случае нельзя однозначно утверждать, что оба сорта атомов Mn в равной доле будут замещены атомами Co и V, ведь наиболее выгодное для себя положение в решетке в первую очередь занимает атом с наибольшей валентностью (в нашем случае это атом Co). К тому же стоит учесть и типы беспорядка.

Основные результаты и выводы

1. Была синтезирована серия образцов Mn_2CoZ (Z = Al, Ga) в виде массивных образцов и быстрозакаленных лент. Экспериментально было обнаружено, что все исследуемые сплавы данной системы имеют нетипичные для металлов высокие значения удельного электросопротивления, обладают высокой температурой Кюри, а величины суммарных магнитных моментов на элементарную ячейку m_t находятся в практически полном согласии с правилом Слейтера-Полинга.

2. Теоретические расчеты показали, что при замещении кобальта ванадием для сплавов Гейслера $Mn_2Co_{1-x}V_xZ$ (Z = Ga, Al, x = 0, 0,25, 0,5, 0,75, 1) при x = 0 более устойчивой является структура XA, а при x = 1 – структура L2₁. Переход от одного к другому типу упорядочения происходит вблизи x = 0,5. Расчет электронной структуры относит соединение Mn_2CoGa к полуметаллу, а $Mn_2CoAl - \kappa$ спин-бесщелевому проводнику. Замена атомов Со на V приводит к изменению электронной структуры сплавов. Для Mn_2CoAl спин-бесщелевое полупроводниковое состояние меняется к полуметаллическому. Для соединения Mn_2CoGa ширина запрещенной зоны для состояний

23

со спином «вниз» исчезает, и формируется псевдощелевое состояние с ПЭС на 2 порядка меньшей, чем такое же значение для состояний со спином «вверх».

3. Были синтезированы образцы $Mn_{2-2x}Co_{0.5+x}V_{0.5+x}Ga$ (x = 0; 0,1; 0,2; 0,25; 0,3; 0,4; 0,5) в виде быстрозакаленных лент и соединение $Mn_{1,5}Co_{0,75}V_{0,75}Al$ в виде быстрозакаленных лент и массивных образов. В быстрозакаленных лентах $Mn_{1,6}Co_{0,7}V_{0,7}Ga$, $Mn_{1,2}Co_{0,9}V_{0,9}Ga$ и $Mn_{1,5}Co_{0,75}V_{0,75}Al$ было реализовано полностью скомпенсированное ферримагнитное состояние при температурах 130, 317,5 и 396 К соответственно.

4. Температура Кюри и абсолютные значения намагниченности понижались с уменьшением содержания марганца в образцах. Общим для всех исследуемых составов Mn-Co-V-Ga, за исключением MnCoVGa, являлось наличие излома в низкотемпературной области, не имеющего скомпенсированной природы и предположительно обусловленного спин-переориентационным переходом.

5. При понижении содержания Mn в образцах Mn-Co-V-Ga удельное сопротивление меняет ход с металлического на полупроводниковый, при этом происходит уменьшение температурного коэффициента сопротивления, что может говорить о снижении вклада электрон-фононного рассеяния в сопротивление. Для соединения Mn_{1,5}Co_{0,75}V_{0,75}Al частичное замещение атомов Mn атомами Co и V не разрушает полуметаллическое поведение сплава.

Список основных работ, опубликованных автором диссертации

M. Seredina, I. Gavrikov, M. Gorshenkov, S. Taskaev, A. Dyakonov, A. Komissarov,
R. Chatterjee, V. Novosad, V. Khovaylo, Magnetic and transport properties of as-prepared
Mn₂CoGa, Journal of Magnetism and Magnetic Materials 470 (2019) 55-58.

2. F. Abuova, T. Inerbaev, A. Abuova, N. Merali, N. Soltanbek, G. Kaptagay, M. Seredina, V. Khovaylo, Structural, electronic and magnetic properties of $Mn_2Co_{1-x}V_xZ$ (Z = Ga, Al) Heusler alloys: an insight from DFT study, Magnetochemistry 7 (2021) 159.

3. M. Seredina, D. Karpenkov, E. Kolesnikov, M. Gorshenkov, A. Degtyarenko, S. Taskaev, P. Degtyarenko, Xiaoguang Xu, V. Khovaylo. Compensated ferrimagnetism and compensation temperatures in $Mn_{2-2x}Co_{0,5+x}V_{0,5+x}Ga$ Heusler alloys, Journal of Magnetism and Magnetic Materials 562 (2022) 169808.

Список используемой литературы

1 Crystal structure of new Heusler Compounds / T. Graf, F. Casper, J. Winterlik e.a. // Zeitschrift für Anorganische und Allgemeine Chemie. – 2009. – V. 635.

2 Graf T., Felser C., Parkin S.S.P. Simple rules for the understanding of Heusler compounds // Progress in Solid State Chemistry. -2011. - V. 39. - P. 1 - 50.

3 Felser C., Fecher G.H., Balke B. Spintronics: a challenge for materials science and solid-state chemistry // Angewandte Chemie International Edition. – 2007. – V. 46.

4 Hirohata A., Takanashi. Future perspectives for spintronic devices // Journal of Physics D: Applied Physics. – 2014. – V. 47.

5 Palmstrøm C.J. Heusler compounds and spintronics // Progress in Crystal Growth and Characterization of Materials. -2016. - V. 62(2).

6 Room-temperature antiferromagnetic memory resistor / X. Marti, I. Fina, C. Frontera e.a. // Nature Materials. – 2014. – V. 13.

7 Felser C., Hirohata A. Heusler alloys: properties, growth, applications, Springer International Publishing, 2016, 486 p.

8 Galanakis I, Dederichs P.H. Half-metallic alloys: fundamentals and applications, Springer-Verlag Berlin Heidelberg, 2005, 312 p.

9 Unusual lattice constant changes and tunable magnetic moment compensation in $Mn_{50-x}Co_{25}Ga_{25+x}$ alloys / G.J. Li, E.K. Liu, H.G. Zhang e.a. // Applied Physics Letters. – 2012. – V. 101.

10 Half-metallic ferromagnets: II. Transport properties of NiMnSb and related intermetallic compounds / M.J. Otto, R.A.M. van Woerden, P.J. van der Valk e.a. // Journal of Physics: Condensed Matter. – 1989. – V. 1.

11 Pseudogap and transport properties in Fe_{3-x}V_xAl_y (x = 0,5–1,05; y = 0,95; 1,05) / A. Matsushita, T. Naka, Y. Takano e.a. // Physical Review B. -2002. -V. 65. -075204.

12 Microstructure, magnetic and transport properties of Mn₂CoAl Heusler compound / X.D. Xu, Z.X. Chen, Y. Sakuraba e.a. // Acta Materialia. – 2019. – V. 176. – P. 33 – 42.

13 Ouardi S., Fecher G.H., Felser C. Realization of spin gapless semiconductors: the Heusler compound Mn₂CoAl / Physical Review Letters. – 2013. – V. 110. – 100401.

14 Effect of doping on SGS and weak half-metallic properties of inverse Heusler alloys / R. Dhakal, S. Nepal, R.B. Ray e.a. // Journal of Magnetism and Magnetic Materials. – 2020. – V. 503. – 166588.

15 Detection of antiskyrmions by topological Hall effect in Heusler compounds / V. Kumar, N. Kumar, M. Reehuis e.a. // Physical Review B. – 2020. – V. 101. – 014424.

16 Large Noncollinearity and Spin Reorientation in the Novel Mn₂RhSn Heusler Magnet / O. Meshcheriakova, S. Chadov, A.K. Nayak e.a. // Physical Review Letters. – 2014. – V. 113. – 087203.

17 Spin reorientation in the new Heusler alloys Ru₂MnSb and Ru₂MnGe / M. Gaton, M. Ohashi, T. Kanomata e.a. // Physica B. – 1995. – V. 213 – 214. – P. 306 – 308.

18 Density functional theory investigation on lattice dynamics, elastic properties and origin of vanished magnetism in Heusler compounds CoMnVZ (Z = Al, Ga) / G. Li, E. Liu, G. Liu e.a. // Chinese Physics B. – 2021. – V. 30 I. 8. – 083103.