Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский технологический университет «МИСиС»

Касимова Валентина Маратовна

Оптические свойства и дефектообразование в кристаллах Gd₃Al_xGa_{5-x}O₁₂ и Gd₃Al₂Ga₃O₁₂:Ce

Шифр и наименование научной специальности 1.3.8 Физика конденсированного состояния

Автореферат диссертации

на соискание ученой степени кандидата физико-математических наук

Научный руководитель к.ф.-м.н., с.н.с. Козлова Нина Семеновна

Москва 2022

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования и степень ее проработанности

Рабочим материалом детекторов высокоэнергетического излучения являются сцинтилляционные материалы. Одними из перспективных и изучаемых сцинтилляционных материалов являются кристаллы со структурой граната, легированные редкоземельными элементами, в силу широких возможностей изоморфного замещения катионов и введения легирующих добавок. Эта способность гранатов позволяет модифицировать свойства и определять новые области их применения [1-3].

В течение последних 10 лет в области сцинтилляционного материаловедения монокристаллических оксидных диэлектрических материалов наблюдается интерес к гадолиний-алюминий-галлиевому гранату, легированному церием: Gd₃Al₂Ga₃O₁₂:Ce (GAGG:Ce), который перспективен в качестве материала детекторов высокоэнергетического излучения [1, 4, 5]. Обладая высокой плотностью и тормозной способностью, кристалл GAGG:Ce нашел свое применение в двух крупных научных проектах: усовершенствовании электромагнитного калориметра адронного коллайдера CERN (программа LHCb) [6, 7] и космической миссии HERMES (программа исследований и инноваций Европейского Союза Horizon 2020) [8].

Основными характеристиками сцинтилляторов являются: световыход, время затухания сцинтилляции, энергетическое разрешение и др. [9-13]. Подавляющее большинство работ по GAGG:Се посвящено исследованию его сцинтилляционных свойств [6, 8, 14-16]. Фундаментальные свойства кристаллов группы гадолиний-алюминий-галлиевого граната $Gd_3Al_xGa_{5-x}O_{12}$ (x=1÷3) и $Gd_3Al_2Ga_3O_{12}$:Се исследованы крайне слабо. Природа дефектов и методы управления дефектной структурой таких кристаллов практически не изучены [17-29].

Цель и задачи работы

Целью настоящей диссертационной работы являлось определение влияния изоморфного замещения катионов и легирования церием, а также послеростовых обработок (отжиги в разных атмосферах) на оптические свойства и элементный состав кристаллов группы гадолиний-алюминий-галлиевого граната $Gd_3Al_xGa_{5-x}O_{12}$ (x=1÷3), $Gd_3Al_2Ga_3O_{12}$:Се и изучение процессов дефектообразования в данных кристаллах.

Для достижения цели были поставлены следующие задачи:

определение влияния изоморфного замещения катионов (изменение соотношения Al/Ga) в кристаллах группы гадолиний-алюминий-галлиевого граната Gd₃Al_xGa_{5-x}O₁₂ (x=1÷3) на оптические и другие параметры;

оценка степени окисления церия в кристаллах Gd₃Al₂Ga₃O₁₂:Се и определение
 влияния легирования кристаллов церием (Gd₃Al₂Ga₃O₁₂:Се) на оптические и другие параметры;

определение влияния высокотемпературных изотермических отжигов на степень окисления церия в легированных кристаллах на оптические и другие параметры кристаллов Gd₃Al_xGa_{5-x}O₁₂ (x=1÷3) и Gd₃Al₂Ga₃O₁₂:Ce;

 определение дефектной структуры, механизмов образования дефектных центров и их влияние на оптические свойства кристаллов Gd₃Al_xGa_{5-x}O₁₂ (x=1÷3) и Gd₃Al₂Ga₃O₁₂:Ce³⁺.

Научная новизна работы

1. Впервые проведены комплексные исследования фундаментальных оптических свойств кристаллов группы Gd₃Al_xGa_{5-x}O₁₂ (x=1÷3) и Gd₃Al₂Ga₃O₁₂:Се таких как: спектральные зависимости коэффициентов пропускания и отражения, показателей поглощения и ослабления. Определены значения оптической ширины запрещенной зоны.

2. Достоверно установлена степень окисления церия в исследуемы кристаллах Gd₃Al₂Ga₃O₁₂:Се, которая составила (3+), впервые экспериментально доказано, что степень окисления церия не меняется даже после высокотемпературных отжигов на воздухе и в вакууме.

3. Впервые определены величины коэффициентов преломления и их дисперсионные зависимости кристаллов Gd₃Al₂Ga₃O₁₂:Ce³⁺ (приоритет PΦ) и группы кристаллов Gd₃Al_xGa_{5-x}O₁₂ (x=1÷3).

4. Убедительно показано, что в процессе роста и высокотемпературных изотермических отжигов в кристаллах $Gd_3Al_xGa_{5-x}O_{12}$ (x=1÷3) и $Gd_3Al_2Ga_3O_{12}$:Ce³⁺ образуются дефекты структуры.

5. Установлена природа дефектов структуры кристаллов и их зависимость от условий получения. Разработаны непротиворечивые вероятностные модели дефектообразования во всех исследованных кристаллах $Gd_3Al_xGa_{5-x}O_{12}$ (x=1÷3) и $Gd_3Al_2Ga_3O_{12}$:Ce³⁺.

Практическая значимость работы

1. Проведены комплексные исследования фундаментальных оптических свойств кристаллов группы Gd₃Al_xGa_{5-x}O₁₂ (x=1÷3) и Gd₃Al₂Ga₃O₁₂:Се и впервые получены экспериментальные данные оптических характеристик, в частности коэффициентов преломления.

2. Показана тенденция изменения оптических свойств гадолиний-алюминийгаллиевого граната в зависимости от изоморфного замещения в катионной подрешетке (изменение соотношения Al/Ga), легирования церием и высокотемпературных отжигов. 3. Разработаны спектрофотометрические Методики выполнения измерений коэффициентов преломления: «Методика выполнения измерений коэффициента отражения и показателя преломления спектрофотометрическим методом» и «Определение коэффициентов преломления света многоугловым спектрофотометрическим методом, основанном на законе Брюстера (метод Брюстера)» – с полной метрологической проработкой.

4. Показано, что при введении в шихту CeO₂ (с церием в степени окисления 4+) в выращенном кристалле Gd₃Al₂Ga₃O₁₂:Се церий находится в степени окисления 3+ и остается в таком устойчивом состоянии даже после высокотемпературных изотермических отжигов.

5. Предложены непротиворечивые вероятностные модели дефектообразования в группе кристаллов гадолиний-алюминий-галлиевого граната с учетом изоморфного замещения в катионной подрешетке (изменение соотношения Al/Ga) и легирования церием.

Методология и методы исследования

В работе все исследуемые кристаллы группы гадолиний-алюминий-галлиевого граната были получены по отработанной технологии методом Чохральского в Ir тигле в атмосфере аргона и 1-2% кислорода от одного производителя – АО «Фомос-Материалы». Перед проведением измерения каждого образца методами оптической микроскопии И спектрофотометрическими методами оценивались их однородность. Оптические параметры определялись спектрофотометрическими методами (коэффициенты пропускания и отражения). Коэффициенты преломления определялись методом отражения от одной грани при малых углах падения света, близких к нормальному (метод R_0), и методом Брюстера. Абсорбционным спектрофотометрическим методом и методом 90-градусного рассеяния света установлено наличие дефектов структуры. Для исследования элементного и химического состава кристаллов использовались методы рентгенофлуоресцентного анализа, рентгеновской фотоэлектронной спектроскопии, энергодисперсионной рентгеновской спектроскопии. Для установления степени окисления церия проведен анализ околопороговой тонкой структуры рентгеновского спектра поглощения – XANES (X-ray Absorption Near Edge Structure). Методом гидростатического взвешивания определялась плотность исследуемых материалов. Измерение микротвердости кристаллов проводилось по методу Виккерса (Vickers).

Положения, выносимые на защиту

1. Изоморфное замещение в катионной подрешетке (изменение соотношения Al/Ga) существенно влияет на оптические свойства кристаллов Gd₃Al_xGa_{5-x}O₁₂ (x=1÷3).

2. Церий в кристаллах Gd₃Al₂Ga₃O₁₂:Се находится в устойчивой степени окисления 3+, которая не меняется даже после высокотемпературных изотермических отжигов на воздухе и в вакууме.

3. Легирование церием кристаллической матрицы Gd₃Al₂Ga₃O₁₂ оказывает заметное влияние на оптические и структурные параметры, приводит к образованию дефектов структуры в виде центров окраски.

4. Изотермические отжиги на воздухе слабо влияют на оптические свойства нелегированных кристаллов $Gd_3Al_xGa_{5-x}O_{12}$ (x=1÷3) с изоморфным замещением в катионной подрешетке и кристаллов $Gd_3Al_2Ga_3O_{12}$:Ce³⁺, легированных церием.

5. Непротиворечивые вероятностные модели дефектообразования во всех исследованных кристаллах Gd₃Al_xGa_{5-x}O₁₂ (x=1÷3) и Gd₃Al₂Ga₃O₁₂:Ce³⁺.

6. Широкая полоса поглощения с $\lambda_{max} \sim 440$ нм на спектральных зависимостях пропускания/поглощения связана не только межконфигурационными переходами 4f – 5d в Ce³⁺, но и образованием собственных ростовых дефектов структуры в Gd₃Al₂Ga₃O₁₂:Ce³⁺.

Степень достоверности и апробация результатов

Исследуемые кристаллы были выращены в компании АО «Фомос-Материалы» из загрузок известного состава, образцы подготовлены с использованием отработанных технологических режимов.

Достоверность результатов, полученных в работе, обеспечивается путем применения комплексных исследований параметров разными методами.

Исследования оптических параметров образцов были проведены в аккредитованной испытательной лаборатории МУИЛ ППМиД «Монокристаллы и заготовки на их основе» НИТУ «МИСиС» на поверенном оборудовании. Достоверность и стабильность результатов измерений подтверждалась контролем стандартных образцов предприятия и использованием разработанных аттестованных методик выполнения измерений.

Основные результаты работы докладывались и обсуждались на следующих международных и национальных конференциях:

Национальная научно-техническая конференция с международным участием «Перспективные материалы и технологии» в 2022 (г. Москва, МИРЭА); II конференция «Физика Конденсированных Состояний» в 2021 (г. Черноголовка, ИФТТ РАН); Российская научно-техническая конференция с международным участием «Инновационные технологии в электронике и приборостроении» в 2020 и 2021 (г. Москва, МИРЭА); Международная конференция «ФИЗИКА ДИЭЛЕКТРИКОВ» в 2017 и 2020 (г. Санкт-Петербург, РГПУ им. А.И.

Герцена); VIII Международная конференция «Кристаллофизика и деформационное поведение перспективных материалов» в 2019 (г. Москва, НИТУ «МИСиС»); XX International Conference on Photoacoustic and Photothermal Phenomena в 2019 (г. Москва); IV Russia-China Workshop on Dielectric and Ferroelectric Materials в 2019 (г. Екатеринбург, УрФУ); LIII Школа ПИЯФ по физике конденсированного состояния в 2019 (г. Санкт-Петербург, НИЦ «Курчатовский институт»); Международная научная конференция студентов, аспирантов и молодых учёных «Ломоносов-2019» в 2019 (г. Москва, МГУ); IV Всероссийская научная молодежная конференция с международным участием «Актуальные проблемы микро- и наноэлектроники» в 2016 (г. Уфа, БашГУ); Московская научно практическая конференция «Студенческая наука» в 2016 (г. Москва, НИТУ «МИСиС»); Международные научно-технические конференции «INTERMATIC» ежегодно с 2015 по 2018 (г. Москва, НИТУ «МИСиС»).

Результаты исследований опубликованы в следующих научных изданиях, в том числе входящих в Перечень ВАК:

 Влияние частичного замещения галлия алюминием на свойства кристаллов гадолиний-алюминий-галлиевого граната / В.М. Касимова, Н.С. Козлова, О.А. Бузанов, Е.В. Забелина, А.В. Таргонский, А.В. Рогачев // Неорганические материалы. – 2022. – Т. 58. – № 3. – С. 1–7. DOI: 10.31857/S0002337X2203006X.

Structural, optical and luminescent properties of undoped Gd3AlxGa5-xO12 (x = 0,1,2,3) and Gd2YAl2Ga3O12 single crystals / D. Spassky, F. Fedyunin, E. Rubtsova, N. Tarabrina, V. Morozov, P. Dzhevakov, K. Chernenko, N. Kozlova, E. Zabelina, V. Kasimova, O. Buzanov // Optical Materials. – 2022. – Vol. 125. – P. 112079. DOI: 10.1016/j.optmat.2022.112079.

3) Optical properties of undoped oxygen-containing compounds of Gd3Al2Ga3O12 and Gd3Al3Ga2O12 single-crystals / V. Kasimova, N. Kozlova, O. Buzanov and E. Zabelina// AIP Conference Proceedings. – 2020. – Vol. 2308. – N. 1. – P. 020003. DOI:10.1063/5.0035129

 4) Многоугловые спектрофотометрические методы отражения для определения коэффициентов преломления / Е.В. Забелина, Н.С. Козлова, Ж.А. Гореева, В.М. Касимова // Известия ВУЗов. Материалы электронной техники. – 2019. – Т. 22. – № 3. – С. 168–178. DOI: 10.17073/1609-3577-2019-3-168-178.

5) Influence of the Sc cation substituent on the structural properties and energy transfer processes in GAGG:Ce crystals / D. Spassky, N. Kozlova, E. Zabelina, V. Kasimova, N. Krutyak, A. Ukhanova, V.A. Morozov, A.V. Morozov, O. Buzanov, K. Chernenko, S. Omelkov, V. Nagirnyi// CrystEngComm. – 2020. – Vol. 22. – P. 2621–2631. DOI: 10.1039/D0CE00122H.

 Оптические характеристики монокристаллического материала Gd3Al2Ga3O12:Ce /
 H.C. Козлова, О.А. Бузанов, В.М. Касимова, А.П. Козлова, Е.В. Забелина // Известия ВУЗов.
 Материалы электронной техники. – 2018. – Т. 21. – № 1. – С. 18–25. DOI:10.17073/1609-3577-2018-1-18-25.

7) Оптические свойства и показатели преломления кристаллов Gd3Al2Ga3O12:Ce3+ /
 H.C. Козлова, О.А. Бузанов, Е.В. Забелина, А.П. Козлова, В.М. Касимова // Кристаллография. –
 2016 – Т. 61. – № 3. – С. 457–461. DOI: 10.7868/S0023476116030164.

Личный вклад автора

Диссертационная работа является результатом научных исследований автора, выполненных в лаборатории МУИЛ ППМиД «Монокристаллы и заготовки на их основе» НИТУ «МИСиС». Все основные результаты, представленные в диссертации, получены лично автором или с непосредственным участием автора при проведении работ и интерпретации результатов. При значительном вкладе автора была разработана МВИ по определению коэффициента преломления спектрофотометрическим методом Брюстера.

Исследования кристаллов методами рентгенофлуоресцентного анализа, рентгеновской фотоэлектронной спектроскопии и гидростатического взвешивания проводилось совместно с работниками кафедры Материаловедения полупроводников и диэлектриков и Центра коллективного пользования «Материаловедение и металлургия» НИТУ «МИСиС». Исследования методом XANES-спектроскопии проводились сотрудниками станции «Ленгмюр» Курчатовского комплекса синхротронно-нейтронных исследований при участии автора.

Структура и объем диссертации

Диссертация состоит из введения, 4 главы, заключения и списка использованных источников из 215 наименований, содержит 140 страниц, включая 72 иллюстрации, 31 таблицу и 40 формул.

Благодарности

Автор выражает искреннюю благодарность своему научному руководителю Козловой Нине Семеновне за актуальную тему исследований, всестороннюю помощь и поддержку. За предоставленные для исследований кристаллы, сотрудничество и консультации выражает благодарность Бузанову Олегу Алексеевичу (АО «Фомос-Материалы»). Автор благодарен всем работникам МУИЛ ППМиД «Монокристаллы и заготовки на их основе», кафедры материаловедения полупроводников и диэлектриков (кафедры МПиД) и ЦКП «Материаловедения и металлургия» за помощь в организации эксперимента, полезные советы и

7

замечания, в особенности: Забелиной Е.В., Быкову А.С., Скрылевой Е.А., Сенатулину Б.Р.; а также сотрудникам станции «Ленгмюр» Курчатовского комплекса синхротронно-нейтронных исследований: (Таргонскому А.В. и Рогачеву А.В.) и НИИЯФ им. Скобельцина МГУ им. Ломоносова (Спасскому Д.А.).

Работа выполнялась на базе НИТУ «МИСиС» в рамках следующих поддержанных проектов:

– грант РФФИ Аспиранты № 19-32-90211 на тему «Оптические и сцинтилляционные свойства кристаллов группы Gd₃Al₂Ga₃O₁₂» (2019-2022 гг.);

государственное задание проект FSME-2020-0031 (0718-2020-0031) «Новые магнитоэлектрические композитные материалы на основе оксидных сегнетоэлектриков с упорядоченной доменной структурой: получение и свойства» (2020-2023 гг.);

– грант РФФИ № 20-02-00688 «Зонная инженерия новых функциональных материалов на основе смешанных кристаллов гранатов Gd₃(Ga,Sc,Al)₅O₁₂:Ce³⁺» (2020-2023 гг.);

– грант КЗ НИТУ «МИСиС» № КЗ-2018-030 «Зонная инженерия новых функциональных материалов на основе смешанных кристаллов гранатов Gd₃(Ga,Al)₅O₁₂:Ce³⁺» (2018-2019 гг.).

Краткое содержание работы

введение

Во введении излагается актуальность выбранной темы, формулируются цели и задачи работы, научная новизна и значимость работы, излагается структура работы.

ГЛАВА 1. АНАЛИТИЧЕСКИЙ ОБЗОР ЛИТЕРАТУРЫ

Глава 1 является аналитическим обзором литературы, в котором обосновано применение монокристаллических оксидных сцинтилляторов $Gd_3Al_2Ga_3O_{12}$:Се для применения в области ядерной медицины, физики высоких энергий. Рассматриваются структура кристаллов, особенности процесса выращивания, дефекты кристаллов $Gd_3Al_2Ga_3O_{12}$ и легированных церием; приводятся данные об оптических, сцинтилляционных свойствах кристаллов, в том числе влияние высокотемпературных отжигов на эти свойства.

Проведенный анализ литературных источников показал, что отсутствуют исследования по влиянию изоморфного замещения в катионной подрешетке (изменение соотношения Al/Ga) для кристаллов Gd₃Al₂Ga₃O₁₂ на оптические параметры. В связи с этим в работе проведены комплексные исследования влияния изоморфного замещения на оптические свойства.

Степень окисления церия, которая имеет важное значение для сцинтилляционных характеристик GAGG:Се, точно не установлена.

8

Влияние легирования церием кристаллов Gd₃Al₂Ga₃O₁₂ изучено только на сцинтилляционные характеристики. Работ о влиянии легирования церием кристаллов на оптические свойства чрезвычайно мало, и они ограничиваются в основном спектральными зависимостями пропускания/поглощения. Две работы по определению коэффициента преломления GAGG:Се показали несопоставимые результаты.

Природа широкой интенсивной полосы поглощения с максимумами при 440 нм, наблюдаемой на спектральных зависимостях поглощения кристаллов GAGG:Ce. Авторы работы [16] природу полос с $\lambda_{max} \sim 440$ нм связывают с межконфигурационными переходами 4f – 5d ионов церия. Однако полосы, которые относят к этим переходам, должны быть узкими, а полуширина наблюдаемой полосы ~ 50 нм, соответственно, не может определяться только межконфигурационными переходами церия.

Не изучено влияние послеростовых воздействий (отжигов) на степень окисления церия, но и на оптические свойства кристаллов гадолиний-алюминий-галлиевого граната.

Наличие точечных дефектов может сильно влиять на оптическое качество кристаллов и ухудшать их генерационные характеристики. Работ по изучению дефектной структуры кристаллов группы Gd₃Al_xGa_{5-x}O₁₂ (x=1÷3) и GAGG:Се не найдено.

ГЛАВА 2. МЕТОДЫ ИССЛЕДОВАНИЙ

В Главе 2 описаны спектрофотометрические методы определения коэффициентов пропускания и отражения, оценки коэффициента рассеяния, определения коэффициентов преломления и оптической ширины запрещенной зоны, XANES-спектроскопия, рентгенофлуоресцентный анализ (РФА), рентгеновская фотоэлектронная спектроскопия (РФЭС), энергодисперсионная рентгеновская спектроскопия (ЭДС), метод измерения микротвердости по Виккерсу. Показано, что для получения достоверных параметров необходимо владеть правильной терминологией, разрабатывать методики выполнения измерений с полной метрологической проработкой и подготавливать стандартные образцы предприятия для контроля получаемых результатов.

Все исследования оптических параметров проводились в аккредитованной испытательной лаборатории МУИЛ ППМиД «Монокристаллы и заготовки на их основе», аккредитованной с 2001 г. по настоящее время в Ассоциации Аналитических центров «Аналитика». Оборудование, использованное при выполнении работы:

– оптический микроскоп «Axio Imager M1m» Carl Zeiss (оптическая микроскопия);

– UV-VIS-NIR спектрофотометр «Cary-5000» с универсальной измерительной приставкой «UMA» Agilent Technologies (спектрофотометрические методы).

9

В работе метод оптической микроскопии использовался для наблюдения как в объеме, так и на поверхности различных дефектов кристалла: трещин, пузырей, включений посторонних фаз, оценки состояния поверхностей. однородности образцов.

Спектрально-угловые зависимости коэффициентов пропускания *T* и коэффициентов отражения *R* в поляризованном и неполяризованном свете измерялись спектрофотометрическими методами.

На основании полученных спектральных зависимостей коэффициентов пропускания T определялся показатель поглощения α по закону Бугера-Ламберта без учета отражения рассчитаны показатели поглощения α (1):

$$\alpha = -\frac{\ln(T)}{d},\tag{1}$$

где *d*-толщина образца, см.

С помощью α двумя методами оценивалась оптическая ширина запрещенной зоны E_G материалов:

1) путем проведения касательной к краю собственного поглощения;

2) методом Таука (Tauc) в соответствии с формулой (2), для чего необходимо иметь данные о принадлежности исследуемого кристалла к классу прямозонных или непрямозонных материалов [30].

$$\alpha = \alpha_0 \frac{\left(hv - E_G\right)^{r/2}}{hv},\tag{2}$$

где E_G – ширина запрещенной зоны, эВ;

 α_0 – константа материала, см⁻¹;

r – степенной показатель. Степенной показатель *r* = 1 – для материалов с прямозонными оптическими переходами и *r* = 4 – для непрямозонных материалов.

Установлено [31], что терминологически более правильно *N* использовать термин «коэффициент преломления», а не «показатель преломления».

Наиболее распространенный метод определения N – гониометрический метод (метод призмы) требует изготовления трехгранной призмы в соответствии с ГОСТ 28869-90 [32], что сложно осуществить. В связи с этим были разработаны спектрофотометрические методы определения коэффициентов преломления N по отражению: метод отражения от одной грани при малых углах падения света, близких к нормальному (метод R_0), и метод Брюстера. Коэффициент отражения R должен исключать влияние многократного отражения, а потому форма образца должна быть такой, чтобы отражение измерялось только от одной рабочей

грани, на которую происходит падение света. Такой формой может быть образец с неплоскопараллельными гранями или шлифованный с обратной от рабочей грани стороны. Точность обоих методов составляет 10⁻³.

Отражение при малых углах падения (R₀) связано с коэффициентом преломления следующим соотношением (3) [33]:

$$R = \frac{(N-1)^2 + \chi^2}{(N+1)^2 + \chi^2},$$
(3)

где χ – коэффициент экстинкции, который определяется по формуле (4):

$$\chi = \frac{\alpha \cdot \lambda}{4\pi}.$$
(4)

Если коэффициент экстинкции χ составляет ~ $(10^{-6}-10^{-4})$, то им можно пренебречь и коэффициент преломления *N* определяется по формуле (5) [33]:

$$N = \frac{1 + \sqrt{R_0}}{1 - \sqrt{R_0}}.$$
 (5)

Этот метод позволяет получать сразу дисперсионные зависимости *N*.

Многоугловой спектрофотометрический метод Брюстера позволяет определить дискретные значения коэффициентов преломления *N* по формуле (6):

$$tg\varphi_{\rm Ep} = N. \tag{6}$$

Метод Брюстера подходит для образца любой формы, обладающего одной полированной гранью. Дисперсионные зависимости N можно получить только путем аппроксимации экспериментальных результатов коэффициентов преломления с использованием специальных уравнений. В работе полученные величины N аппроксимировались уравнением Коши (Cauchy) (7):

$$N = J + \frac{K}{\lambda^2} + \frac{L}{\lambda^4},\tag{7}$$

где *J*, *K*, *L* – материальные константы уравнения Коши.

Определение значений коэффициентов преломления позволило получить значение показателей ослабления света.

Оценка степени окисления церия проводилась методом, основанным на анализе околопороговой тонкой структуры рентгеновского спектра поглощения – XANES (X-ray Absorption Near Edge Structure). Полученные XANES-спектры сравнивались с характерными спектрами для Ce³⁺ и Ce⁴⁺ с использованием эталонных образцов. Рентгеновские спектры на L₃ – крае поглощения Се получены на станции «Ленгмюр» Курчатовского источника синхротронного излучения с использование излучения поворотного магнита. Энергетическое разрешение составляло порядка 3 эВ. Регистрация спектров поглощения выполнена во флуоресцентной моде.

Элементный и химический составы исследовались методами: РФА на рентгенофлуоресцентном спектрометре Lab Center XRF-1800 и РФЭС на рентгеновском фотоэлектронного спектрометра PHI5500VersaProbeII фирмы «ILVAC-PHI» в центре коллективного пользования НИТУ «МИСиС», а также методом ЭДС с использованием сканирующего электронного микроскопа Tescan VEGA3 с Oxford Instruments X-Max 50 кремниевым дрейфовым энергодисперсионным рентгеновским аппаратом с программным обеспечением AZtec и INCA.

Измерения микротвердости H_V по Виккерсу были проведены с использованием автоматизированного поверенного микротвердомера Aaffri DM 8 В AUTO при нагрузке 25 г. Точность измерения микротвердости по Виккерсу не хуже 5%.

ГЛАВА 3. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В Главе 3 приводятся результаты, полученные в ходе выполнения работы. Установлена степень окисления церия в кристаллах $Gd_3Al_2Ga_3O_{12}$:Се. Показано влияние изоморфного замещения в катионной подрешетке (изменение соотношения Al/Ga), легирования церием и высокотемпературных изотермических отжигов на оптические свойства, элементный состав и микротвердость кристаллов $Gd_3Al_2Ga_3O_{12}$:Се и $Gd_3Al_xGa_{5-x}O_{12}$ (x=1÷3): $Gd_3Al_1Ga_4O_{12}$ (Al:Ga=1:4), $Gd_3Al_2Ga_3O_{12}$ (Al:Ga=2:3) и $Gd_3Al_3Ga_2O_{12}$ (Al:Ga=3:2). Состав кристаллов определяется по шихте.

Нелегированные кристаллы составов $Gd_3Al_1Ga_4O_{12}$, $Gd_3Al_2Ga_3O_{12}$ и $Gd_3Al_3Ga_2O_{12}$ не имеют окраски, а кристаллы, легированные церием, ($Gd_3Al_2Ga_3O_{12}$:Ce) имеют насыщенный лимонно-желтый цвет (рисунок 1).

Рисунок 1 – Внешний вид исследуемых образцов: a) Al:Ga=1:4; б) Al:Ga=2:3; в) Al:Ga=3:2; г) Gd₃Al₂Ga₃O₁₂:Ce

На стадии получения кристаллов Al:Ga=1:4 и Al:Ga=3:2 образуются трещины, которые, по-видимому, являются результатом внутренних напряжений в кристаллической решетке. Кристаллы с соотношением Al:Ga=2:3 видимых дефектов не имеют.

3.1 Кристаллы в исходном состоянии

3.1.1 Кристаллы с изоморфным замещением в катионной подрешетке

Спектральные зависимости *T* кристаллов Al:Ga=1:4, Al:Ga=2:3 и Al:Ga=3:2 представляют собой немонотонные зависимости с характерными полосами поглощения (рисунок 2). Наблюдаются типичные для гадолинийсодержащих кристаллов полосы, относящиеся к межконфигурационным переходам Gd^{3+} : ⁸S-⁶P_j, ⁸S-⁶I_j и ⁸S-⁶D_j: с максимумами $\lambda_{max} \sim 230$ нм, ~275 нм и ряд полос в диапазоне длин волн 300÷310 нм [16].

На спектральных зависимостях коэффициентов наблюдается значительное увеличение поглощения света для кристаллов Al:Ga=1:4 по сравнению с Al:Ga=2:3 и Al:Ga=3:2, особенно это заметно в коротковолновой области.

В то время как спектральные зависимости *Т* кристаллов Al:Ga=2:3 и Al:Ga=3:2 практически не отличаются друг от друга. Это может свидетельствовать о том, что в кристалле Al:Ga=1:4 должно быть больше поглощающих центров, чем в кристаллах других исследуемых составов.

Наблюдается сдвиг края собственного поглощения кристаллов в зависимости от изоморфного замещения катионов.

При увеличении концентрации галлия сдвиг происходит в длинноволновую сторону, что свидетельствует об уменьшении оптической ширины запрещенной зоны.

Ширина запрещенной зоны кристаллов Al:Ga=1:4, Al:Ga=2:3 и Al:Ga=3:2 определена двумя способами по краю собственного поглощения и методом Таука (Tauc) (таблица 1).

	Соотношения	Оптическая ширина запрещенной зоны				
Кристалл	Al:Ga по шихте	Метод проведения касательной к краю собственного поглощения <i>E_G</i> ±0,1, эВ	Метод Таука (Tauc) <i>Е</i> _б ±0,05, эВ			
$Gd_3Al_1Ga_4O_{12}$	1:4	5,6	5,71			
Gd ₃ Al ₂ Ga ₃ O ₁₂	2:3	5,7	5,78			
Gd ₃ Al ₃ Ga ₂ O ₁₂	3:2	5,8	5,91			
Gd ₃ Al ₂ Ga ₃ O ₁₂ :Ce	2:3 + Ce	5,8	5,85			

Таблица 1 – Значения оптической ширины запрещенной зоны исследуемых кристаллов

В работе [34] установлено, что кристаллы типа гранат являются прямозонными материалами. Исследуемые кристаллы относятся к прямозонным и для определения E_G проводилась касательная к краю собственного поглощения на графиках в координатах $f(hv) = (\alpha hv)^2$.

Коэффициенты преломления кристаллов Al:Ga=1:4, Al:Ga=2:3, Al:Ga=3:2 определены многоугловым спектрофотометрическим методом Брюстера. Наблюдается снижение *N* при увеличении концентрации алюминия во всем видимом диапазоне (рисунок 3).

Одной из важных характеристик, с помощью которой можно оценить оптическое качество кристалла, является показатель ослабления светового потока μ , прошедшего через материал. Для определения μ в соответствии с ГОСТ 3520-92 [35] по формуле (8), необходимо использовать значения N и коэффициентов внутреннего пропускания τ .

$$\mu = -\frac{\ln\left(\sqrt{\left[\frac{1}{T} \times \frac{8N^2}{(N-1)^4}\right]^2 + \left[\frac{N+1}{N-1}\right]^4} - \frac{1}{T} \times \frac{8N^2}{(N-1)^4}\right)}{d}.$$
(8)

Установлено, что при $\lambda = 400 \div 650$ нм волн наименьшее ослабление света наблюдается у Al:Ga=3:2 (рисунок 4). В области $\lambda = 330 \div 440$ нм для Al:Ga=2:3 наблюдается наибольшее

ослабление μ , а в области $\lambda = 440 \div 650$ нм наибольшее μ наблюдается у Al:Ga=1:4. При $\lambda = 440$ нм ослабление у кристаллов Al:Ga=2:3 и у Al:Ga=1:4 практически одинаковое.

3.1.2 Кристаллы, легированные церием

Для определения степени окисления церия в кристалле $Gd_3Al_2Ga_3O_{12}$:Се проводились исследования XANES спектров вблизи L_3 – края поглощения церия. В первую очередь, исследования проводились на эталонных образцах CeCl₃ и CeO₂ (рисунок 5а). Для спектров Ce³⁺ для образца CeCl₃ характерен один пик поглощения ~ 5730 эВ, для Ce⁴⁺ (образец CeO₂) характерны два пика поглощения ~ 5735 эВ и 5740 эВ.

Рисунок 5 – XANES спектр вблизи L_3 – края поглощения церия: а) эталонные образцы; б) $Gd_3Al_2Ga_3O_{12}$:Се

На полученных спектральных зависимостях поглощения света для кристалла Gd₃Al₂Ga₃O₁₂:Се наблюдается один пик ~5,73 кэВ, который характерен для церия в степени окисления (3+) (рисунок 5б). Особенности спектра, характерные для Се⁴⁺, не наблюдаются, что свидетельствует либо о его малой концентрации в кристалле, либо о полном отсутствии.

Таким образом, точно установлено, что степень окисления в исследованных в работе кристаллах Ce^{3+} , а исследованные кристаллы можно записать в виде $Gd_3Al_2Ga_3O_{12}:Ce^{3+}$.

Однако, полосы, вызванные такими переходами в церии, должны быть узкими. Однако согласно полученным результатам, полосы поглощения с максимумами $\lambda_{max} \sim 340$ нм и ~ 440 нм содержат несколько пиков поглощения, которые, по всей видимости, можно соотнести с ростовыми дефектами структуры.

Таким образом, сделано предположение, что полосы с максимумами λ_{max} ~ 340 нм и 440 нм имеют двойственную природу (связаны как с межконфигурационными переходами в церии, так и с ростовыми дефектами структуры).

Легирование церием $Gd_3Al_2Ga_3O_{12}$ увеличивает E_G (таблица 1).

Коэффициенты преломления для кристалла $Gd_3Al_2Ga_3O_{12}:Ce^{3+}$ определялись двумя способами: методом R_0 и методом Брюста для λ : 300, 440, 500, 589 и 650 нм. Так как порядок величин χ для исследуемых кристаллов не превышает 10^{-4} , N могут быть оценены методом R_0 в соответствии с уравнением (5) (рисунок 7). Полученные двумя методами результаты хорошо согласуются между собой.

Рисунок 7 – Дисперсионные зависимости NGd₃Al₂Ga₃O₁₂:Ce³⁺, полученные 2 методами

Рисунок 8 – Дисперсионные зависимости N исследуемых кристаллов

Полученные методом Брюстера результаты коэффициента преломления GAGG:Ce³⁺ свидетельствуют о том, что легирование церием оказывает влияние на N в коротковолновой области в сравнении с нелегированным кристаллом исходного состава Al:Ga=2:3 (рисунок 8).

сунок 9 — Спектральные зависимости µ исследуемых кристаллов

По формуле (8) при использовании определенных коэффициентов преломления были получены спектральные зависимости показателя ослабления *µ* (рисунок 9).

Показатели ослабления GAGG:Ce³⁺ значительно превышают значения μ Al:Ga=2:3. Это свидетельствует о том, что в кристаллах, легированных церием, присутствует больше ростовых дефектов, чем в Al:Ga=2:3.

3.2 Кристаллы после изотермических отжигов

Для достоверного сравнения влияния изотермического отжига на оптические свойства для образцов состава Al:Ga=1:4, Al:Ga=2:3, Al:Ga=3:2 и Gd₃Al₂Ga₃O₁₂:Ce³⁺ был проведен отжиг на воздухе в одинаковых условиях при 1173 К в течение 8 часов.

Кристаллы Gd₃Al₂Ga₃O₁₂:Ce³⁺ были отожжены в кислородсодержащей среде при температуре 1523 К в течение 10 часов и в вакууме при температуре 1273 К в течение 30 минут.

3.2.1 Кристаллы с изоморфным замещением в катионной подрешетке

Окраска нелегированных кристаллов Al:Ga=1:4, Al:Ga=2:3 и Al:Ga=3:2, отожженных на воздухе, не отличается от окраски исходных кристаллов.

Спектральные зависимости коэффициентов пропускания и показателей поглощения нелегированных отожженных кристаллов также имеют характерные гадолиниевые полосы поглощения, как и кристаллы в исходном состоянии.

Наблюдается незначительное увеличение поглощения света после отжига для кристаллов (рисунок 10).

Край собственного поглощения нелегированных кристаллов с увеличением алюминия в катионной подрешетке после отжига на воздухе не сдвигается. 700 Следовательно, оптическая ширина запрещенной зоны E_G после отжигов исследуемых кристаллов практически не меняется.

нелегированных кристаллов до и после не меняется. отжигов

Изотермический отжиг на воздухе приводит к увеличению *N* во всем диапазоне длин волн для Al:Ga=2:3 и Al:Ga=3:2 (наиболее заметное) (рисунок 11). Для Al:Ga=1:4 тенденция противоположная, при отжиге на воздухе коэффициент преломления уменьшился.

35 Исх. состояние 30 3,0 Al:Ga=1:4 Al:Ga=2:3 2.5 Al:Ga=3:2 25 l∠ S 2,0 Этжиг: Al-Ga=1-4 ς ∣ ±î 20-1.5 AI:Ga=2:3 Al:Ga=3:2 **ゴ** 15 1,0 0,5 10 -0,0 350 400 450 500 550 600 650 300 λ. нм 5 0 300 350 400 450 500 550 600 650 λ, нм

После отжига µ значительно увеличилось у кристаллов Al:Ga=1:4, для Al:Ga=2:3 и Al:Ga=3:2 произошли не столь явные изменения (рисунок 12).

Для оценки дефектов структуры кристаллов после внешних воздействий использовался абсорбционный спектрофотометрический метод [36]. Для этого измерялись спектральные зависимости коэффициентов пропускания до Tucx. и после воздействия Teord. (отжига), а при сопоставлении спектров этих образцов получали спектр дополнительного поглощения (наведенного поглощения) Δk (см⁻¹) по формуле (9):

$$\Delta k = \frac{1}{d} \ln \left(\frac{T_{ucx.}}{T_{603\partial.}} \right). \tag{9}$$

кристаллов после отжига

После отжига в кислородсодержащей среде для кристаллов составов Al:Ga=1:4, Al:Ga=2:3 и Al:Ga=3:2 были получены спектры наведенного поглощения.

Для кристаллов состава Al:Ga=1:4 и Al:Ga=2:3, Al:Ga=3:2 (рисунок 13) наблюдается появление полос наведенного поглощения в коротковолновой области до 350 нм, особенно это заметно на спектрах наведенного поглощения кристаллов состава Al:Ga=1:4.

3.2.2 Кристаллы, легированные церием

Окраска кристаллов Gd₃Al₂Ga₃O₁₂:Ce³⁺, подвергнутых изотермическим отжигам на воздухе и в вакууме, не отличается от окраски исходных кристаллов.

Отжиги Gd₃Al₂Ga₃O₁₂:Ce³⁺ на воздухе и в вакууме не влияют на степень окисления церия, церий имеет устойчивую степень окисления 3+ (рисунок 14).

Рисунок 14 - XANES спектр вблизи L_3 - края поглощения церия после отжигов: а) отжиг на воздухе при 1523 К; б) отжиг в вакууме

Изотермические отжиги оказали влияние на оптическое пропускание/поглощение в разных диапазонах длин волн, но не повлияли на расположение полос поглощения. Для кристаллов, отожженных на воздухе при 1173 К, наблюдается слабое уменьшение T при λ 380÷410 нм и 500÷700 нм (рисунок 15а). В области 200÷400 нм отжиг на воздухе при 1523 К кристалла Gd₃Al₂Ga₃O₁₂:Ce³⁺ привел к слабому уменьшению интенсивности T в коротковолновой области на 5%, а отжиг при 1273 К в вакууме – слабому изменению T при 400÷500 нм (рисунок 15б).

Рисунок 15 – Спектральные зависимости α GAGG: Ce³⁺ до и после отжигов: а) отжиг на воздухе при 1173 K; б) отжиги на воздухе при 1573 K и в вакууме

Край собственного поглощения после отжигов на воздухе и в вакууме кристаллов $Gd_3Al_2Ga_3O_{12}:Ce^{3+}$ не сдвигается, соответственно значение оптической ширины запрещенной зоны не меняется.

Коэффициенты преломления N отожженных кристаллов определены методом Брюстера. Отжиг кристалла Gd₃Al₂Ga₃O₁₂:Ce³⁺ на воздухе приводит к увеличению N в области до 500 нм (рисунок 16).

После отжига на воздухе ослабление значительно уменьшилось, особенно в полосах поглощения $\lambda_{max} \sim 340$ нм и ~ 440 нм. Это может свидетельствовать об уменьшении дефектности структуры (рисунок 17).

На рисунке 18 представлены спектры наведенного поглощения для кристаллов Gd₃Al₂Ga₃O₁₂:Ce³⁺ после отжигов в вакууме и на воздухе.

После отжига при 1523 К на воздухе области λ до 350 нм наблюдается резкий рост Δk , что, вероятно, образования является признаком дополнительных дефектов структуры. В полосах 350 нм и 450 нм наблюдается уменьшение Δk . что может свидетельствовать об уменьшении дефектности структуры.

Отжиг в вакууме приводит к увеличению иаведенного поглощения в полосах 350 нм и 450 нм, что может свидетельствовать об увеличении дефектности структуры (рисунок 18).

При исследовании микротвердости по Виккерсу H_V исследуемые кристаллы подвергали разным нагрузка и установлено, что при нагрузке 25 г у кристаллов наблюдается образование не более двух трещин в области отпечатка. С увеличением нагрузки появляются сколы. Поэтому оптимальной используемой нагрузкой выбрана P=25 г.

Результаты оценки микротвердости H_V нелегированных кристаллов составов по шихте Al:Ga=1:4, Al:Ga=2:3 и Al:Ga=3:2 свидетельствуют о том, что наименьшим значением микротвердости обладает кристалл состава Al:Ga=2:3. Изоморфное замещение в катионной подрешетке относительно кристалла Al:Ga=2:3 приводит к изменению микротвердости. При легировании кристалла Al:Ga=2:3 церием значение микротвердости практически не изменилась (таблица 2).

Изотермический отжиг значительно повлиял (увеличение микротвердости) на все кристаллы, кроме кристалла Al:Ga=3:2. особенно сильное влияние высокотемпературных отжигов наблюдалось для кристаллов Al:Ga=2:3 и Gd₃Al₂Ga₃O₁₂:Ce³⁺ (таблица 2).

На основании полученных экспериментальных результатов H_V оценено значение твердости по Moocy (Moh) H_M по формуле Motta (Mott) (10) [18], которое для всех исследуемых кристаллов как до, так и после отжигов оказалось в пределах от 7 до 8 баллов.

$$H_M = 0.675 \times \sqrt[3]{H_V}.$$
 (10)

	Кристалл									
Параметр	Al:Ga=1:4		Al:Ga = 2:3		Al:Ga = 3:2		GAGG:Ce ³⁺			
	Исх.	Отжиг на воздухе	Исх.	Отжиг на воздухе	Исх.	Отжиг на воздухе	Исх.	Отжиг на воздухе при 1523 К	Отжиг в вакууме	
$H_V \pm 5\%,$ кг/мм ²	1500	1610	1280	1540	1540	1560	1290	1510	1530	
H_M	7,7	7,9	7,3	7,8	7,8	7,8	7,4	7,7	7,8	
Y	0,71	0,69	0,74	0,70	0,70	0,70	0,74	0,71	0,70	

Таблица 2 – Значения H_V, H_M и Y исследуемых кристаллов до и после отжигов

С помощью полученных значений H_M для кристаллов сложных составов можно оценить степень ионности связи Y (11) [18]. Чем ближе полученное значение Y к 1, тем более ионный характер связи наблюдается у материала. Полученные результаты свидетельствуют о преимущественно ионном характере межатомных связей, для которого после отжига наблюдается тенденция к уменьшению ионности связи.

$$Y = \frac{-11,39 - \sqrt{11,39^2 + 4.15,79 \cdot (7,63 - H_M)}}{-2.15,79}.$$
(11)

ГЛАВА 4. ВЕРОЯТНОСТНЫЕ МОДЕЛИ ДЕФЕКТООБРАЗОВАНИЯ В ИССЛЕДУЕМЫХ КРИСТАЛЛАХ

В Главе 4 приводятся результаты элементного анализа и оценки плотности и параметра решетки, установлена природа ростовых дефектов структуры и предложена непротиворечивая вероятностная модель дефектообразования во всех исследуемых кристаллах.

Измерения ρ проводились методом гидростатического взвешивания с дальнейшим пересчетов в *a* по формуле (12) (таблица 3). Увеличение концентрации алюминия в нелегированных кристаллах приводит к уменьшению плотности ρ и параметра решетки *a*. Легирование церием увеличивает ρ , но уменьшает *a*.

Таблица 3 – Значения плотности р и параметра решетки а исследуемых кристаллов

Соотношения Al:Ga	1:4	2:3	3:2	2:3 + Ce	
Плотность ρ , г/см ³	$6,854{\pm}0,005$	6,6285±0,0006	6,447±0,002	6,641±0,001	
Параметр решетки <i>a</i> , Å	12,341	12,293	12,221	12,283	

$$a = \sqrt[3]{\frac{0,0132846M}{\rho}},$$
 (12)

где М – молярная масса, г/моль.

Для подготовки к созданию вероятностной модели дефектообразования в кристаллах Gd₃Al_xGa_{5-x}O₁₂ (x=1÷3) был проведен элементный анализ. Методом РФА была определена

концентрация всех основных элементов Gd, Al, Ga, O, Ce во всех исследуемых кристаллах (таблица 4).

Метод	Теоретический расчет (по составу шихты)				Экспериментальные данные, полученные методом РФА			
Элемент	GAGG:Ce ³⁺	GAGG:Ce ³⁺ Al:Ga=1:4 Al:Ga=2:3 Al:Ga=3:2		Al:Ga=3:2	GAGG:Ce ³⁺	Al:Ga=1:4	Al:Ga=2:3	Al:Ga=3:2
Gd	14,85	15,00	15,00	15,00	14,78	15,15	15,86	13,95
Al	10,00	5,00	10,00	15,00	12,98	7,12	12,89	17,08
Ga	15,00	20,00	15,00	10,00	12,08	17,73	11,25	9,01
Ce	0,15	_	_	_	0,03	_	_	-
0	60,00	60,00	60,00	60,00	60,16	60,00	60,00	60,00

Таблица 4 – Концентрация w, ат.% основных элементов в исследуемых кристаллах

Наблюдается отклонение концентрации элементов в выращенных кристаллах от теоретического расчета по шихте. Методом РФА было показано, что концентрация галлия уменьшается в кристаллах всех исследуемых составов.

Для кристаллов со структурой граната на одну элементарную ячейку приходится 160 атомов, из которых 96 являются анионами, формирующими координационные многогранники (додекаэдры, октаэдры и тетраэдры), и 64 – катионами, которые делятся между многогранниками следующим образом: 24 катиона в додекаэдрической, 16 катионов в октаэдрической и 24 катиона в тетраэдрической позициях [37, 38].

Расположение атомов по определенным позициям, соответствующих координационными многогранниками – додекаэдрами, октаэдрами и тетраэдрами, в решетке нелегированных кристаллов Gd₃Al_xGa_{5-x}O₁₂ (x=1÷3) представлено в таблице 5.

Тип позиции	КЧ	Предел устойчивости координационных многогранников по отношению <i>R_k/R_a</i> [39]	Элемент	Ионный радиус катиона <i>R_k</i> , Å [40]	Величина <i>R_k/R_a</i>	Эксперимен- тальное подтверждение (источник)
Додекаэдрическая	0	0,73–1,00	Gd^{3+}	1,053	0,74	[37, 38, 41]
позиция {C}/ <i>А^{VIII}</i>	8		Ce ³⁺	1,143	0,80	_*
Октаэдрическая позиция [A]/ <i>В^{V7}</i>	6	0,41–0,73	Al ³⁺	0,535	0,38	[37, 38, 41]
			Ga ³⁺	0,620	0,44	[37, 38, 41]
			Gd^{3+}	0,94	0,67	[38]
			Ce ³⁺	1,010	0,72	_*
Тетраэдрическая			Al ³⁺	0,390	0,28	[37, 38, 41]
позиция 4 (D)/ <i>C</i> ^{IV}	0,22–0,41	Ga ³⁺	0,470	0,34	[37, 38, 41]	

Таблица 5 – Расположение основных элементов по координационным многогранникам

* Экспериментальное подтверждение не найдено.

Позицией для расположения иона Gd^{3^+} является додекаэдр, это подтверждается и оценкой соотношения R_k/R_a , так как координационный многогранник при вхождении элемента не искажается (таблица 5). Gd^{3^+} также может занять октаэдрическую позицию, не искажая координационный многогранник, при этом замещая другие катионы, образуя антиструктурные дефекты типа $\mathrm{Gd}_{\mathrm{Al}}$ и $\mathrm{Gd}_{\mathrm{Ga}}$ [39]. Алюминий и галлий могут размещаться в октаэдрах и тетраэдрах с сохранением координационных многогранников в устойчивом состоянии.

Согласно полученным методами РФА и ЭДС результатам, для каждого выращенного кристалла наблюдался недостаток галлия в составе относительно его концентрации в шихте. Причиной этого может служить типичное для галлийсодержащих оксидных кристаллов улетучивание оксида галлия Ga₂O в процессе роста [42]. Кроме того, согласно [43], в системе, содержащей галлий и кислород, в зависимости от температуры и давления характерно улетучивание кислорода и галлия в виде разных соединений: O₂, Ga₂O, GaO, а также O и Ga.

Все исследуемые кристаллы выращиваются при температуре $T_{nn} = 2123$ К, при которой, согласно [43], наиболее вероятными будут являться процессы улетучивания O₂ и Ga₂O, при этом скорость улетучивания кислорода превышает скорость улетучивания Ga₂O. Галлий в виде GaO и Ga с меньшей вероятностью улетучивается в процессе роста, так как скорость улетучивания Ga₂O не менее чем на порядок превышает скорости улетучивания GaO и Ga.

Предположим, что в процессе выращивания улетучивается nGa_2O и mO_2 (где m > n). Это приводит к незаполненности узлов решетки выращенного кристалла, занимаемых этими элементами, то есть к образованию вакансий галлия (V_{Ga}^{--}) и вакансий кислорода (V_0^{++}). В связи с этим для понимания процесса дефектообразования необходимо описать возможные процессы с помощью соответствующих уравнений (13) и (14):

$$mO_2 \uparrow \leftrightarrow 2mV_0^{++} + 4me,$$
 (13)

$$nGa_2O\uparrow \leftrightarrow 2nV_{Ga}^{---} + nV_O^{++} + 4np.$$
(14)

Этот процесс будет проходить для всех исследуемых кристаллов $Gd_3Al_xGa_{5-x}O_{12}$. (x=1÷3) и $Gd_3Al_2Ga_3O_{12}$:Ce³⁺.

Для формирования ростовых дефектов необходимо использовать элементы из правых частей уравнений (13) и (14): $2mV_0^{++}$, 4me, $2nV_{Ga}^{---}$, nV_0^{++} и 4np. Эти количественные характеристики должны быть увеличены в три раза для сохранения целочисленности количества дефектов.

Из уравнения (13) вакансии кислорода $6mV_0^{++}$ и свободные электроны 12*m*е могут сформировать $F_{II}(V_0^{++} + 2e)$ (15):

$$6mV_0^{++} + 12me \leftrightarrow 6mF_{II}.$$
 (15)

Из уравнения (14) вакансии галлия $3nV_{Ga}$ и свободные дырки 9np могут сформировать $V_{II}(V_{Ga} + 3p)$ (16):

$$3nV_{Ga}^{--} + 9np \leftrightarrow 3nV_{II}.$$
 (16)

Нескомпенсированными из уравнения (14) остались $3nV_{Ga}^{--}$, $3nV_{O}^{++}$ и 3np, которые могут сформировать дефекты Шоттки (**S**) ($2V_{Ga}^{--} + 3V_{o}^{++}$) (17) и V_Ц(**V**_{Ga}^{--} + **3p**) (18).

$$2\mathbf{n}\mathbf{V}_{\mathbf{Ga}}^{---} + 3\mathbf{n}\mathbf{V}_{\mathbf{O}}^{++} \leftrightarrow \mathbf{n}\mathbf{S},\tag{17}$$

$$nV_{Ga}^{--} + 3np \leftrightarrow nV_{II}.$$
 (18)

В выращенных кристаллах после улетучивания O_2 и Ga_2O могут формироваться ростовые дефекты типов $6mF_{II}$, nS и $4nV_{II}$. Поскольку m > n дефектов типа F_{II} должно образовываться больше, чем дефектов S или V_{II} .

Нелегированные кристаллы группы Gd₃Al_xGa_{5-x}O₁₂ (x=1÷3)

Для описания различия уравнений (13) и (14) в зависимости от изоморфного замещения в катионной подрешетке необходимо ввести специальный коэффициент β , на который необходимо умножить все количественные характеристики ростовых дефектов. Специальный коэффициент β представляет собой отношение суммы катионов в элементарной ячейке (ЭЯ) (64 атома) к реальному количеству катионов, которые вошли в ЭЯ.

Для того, чтобы соотнести количество атомов, приходящихся на элементарную ячейку, с заданным составом кристалла необходимо вычислить формульный коэффициент. Формульный коэффициент равен соотношению количества атомов на ЭЯ к количеству формульных единиц по составу кристалла. Кристалл состава $Gd_3Al_xGa_{5-x}O_{12}$ имеет 20 формульных единиц (3 Gd, 5Al/Ga и 12O). Так как на одну ЭЯ типа гранат приходится 160 атомов, то формульный коэффициент для кристалла $Gd_3Al_xGa_{5-x}O_{12}$ равен <u>8</u> (160/20=8).

На одну ЭЯ приходится 24 $(3 \cdot \underline{8})$ катиона Gd^{3+} , а также 40 катионов Al^{3+} и Ga^{3+} , количество которых зависит от соотношения алюминия к галлию в соответствии с химической формулой кристалла $\mathrm{Gd}_3\mathrm{Al}_x\mathrm{Ga}_{5-x}\mathrm{O}_{12}$. Al^{3+} и Ga^{3+} на одну элементарную ячейку приходится 8x и $8 \cdot (5-x)$, соответственно.

При введении в шихту оксидов исходных элементов Gd_2O_3 , Al_2O_3 и Ga_2O_3 на создание одной ЭЯ соответствующей составу $Gd_3Al_xGa_{5-x}O_{12}$ потребуется (19)-(21).

$$12Gd_2O_3 \leftrightarrow 24Gd^{+++} + 36O^{--},\tag{19}$$

$$4xAl_2O_3 \leftrightarrow 8xAl^{+++} + 12xO^{--}, \tag{20}$$

$$4 \cdot (5-x)Ga_2O_3 \leftrightarrow 8 \cdot (5-x)Ga^{+++} + 12 \cdot (5-x)O^{--}.$$
(21)

Соединения гадолиния и алюминия с кислородом не образуют летучих соединений. В связи с этим при описании модели считаем, что 24Gd⁺⁺⁺ и 8xAl⁺⁺⁺ вошли в одну ЭЯ. Для оценки вхождения галлия в ЭЯ необходимо учесть результаты РФА по элементному анализу.

Таким образом, Δ_{Ga} определяется по формуле (22) и записывается в виде целочисленного результата.

$$\Delta_{Ga} = \frac{W_{\kappa pucman} \cdot 8 \cdot (5 - x)}{W_{\mu a \kappa ma}}, \qquad (22)$$

где *w_{кристалл}* – концентрация галлия в выращенном кристалле, полученная с помощью метода РФА (таблицы 4), ат.%;

*w*_{ишхта} – концентрация галлия по шихте (таблицы 4), ат.%.

Поскольку количество катионов с учетом соблюдения электронейтральности соответствует количеству анионов, то специальный коэффициент β может быть определен с учетом количества катионов на элементарную ячейку (23):

$$\beta = \frac{64}{\Delta_{Ga} + 8x + 24}.\tag{23}$$

Таким образом, с помощью специального коэффициента β можно качественно оценить формирование ростовых дефектов структуры в зависимости от соотношения алюминия к галлию в катионной подрешетке (таблица 6).

Таблица 6 – Специальный коэффициент β для всех нелегированных кристаллов

Кристалл	Al:Ga=1:4	Al:Ga=2:3	Al:Ga=3:2
<i>x</i> *	1	2	3
$\Delta_{\mathbf{Ga}}$ **	27	17	14
β***	1,08	1,12	1,03

* Получено из химической формулы кристалла. ** Рассчитано с использованием уравнения (22). *** Рассчитано с использованием уравнения (23).

Чем ближе β к единице, тем совершеннее структура кристалла и меньше ростовых дефектов.

Легированный церием кристалл Gd₃Al₂Ga₃O₁₂:Ce³⁺

Для выращивания кристалла Gd₃Al₂Ga₃O₁₂:Се в шихту вводят церий в виде CeO₂ со степенью окисления (4+). Для оценки степени окисления в выращенном кристалле был использован метод XANES-спектроскопии, который показал, что степень окисления церия в

исследуемых кристаллах составляет (3+). Следовательно, интерес вызывает расположение Ce^{3+} в координационных многогранниках, а не Ce^{4+} .

Согласно таблице 5, церий по литературным данным может размещаться в додекаэдрической позиции [16], однако эти данные не подтверждены экспериментально. При этом ни в одной статье не обсуждалось его возможное расположение в иных позициях. Согласно теоретическим данным таблицы 5, Ce³⁺ может занимать октаэдрические позиции: соотношение $R_k/R_a = 0,72$ и свидетельствует о том, что церий может входить в октаэдр с сохранением устойчивости координационного многогранника.

Для кристаллов Gd₃Al₂Ga₃O₁₂:Ce³⁺ методом РФА наблюдался значительный недостаток галлия в выращенных кристаллах. Для легированных кристаллов, как и для Gd₃Al_xGa_{5-x}O₁₂ (x=1÷3), характерен процесс испарения кислорода и галлия в виде Ga₂O с образованием ростовых дефектов трех типов **S**, **F**_{II} и **V**_{II}.

Отличительной особенностью $Gd_3Al_2Ga_3O_{12}$:Ce³⁺ является желтая окраска кристалла, что свидетельствует об образовании структурных дефектов в виде центров окраски. В дефектообразовании в отличие от нелегированных кристаллов $Gd_3Al_xGa_{5-x}O_{12}$ (x=1÷3) введение в матрицу церия может породить дополнительные дефекты. Ce³⁺, согласно таблице 5, может занимать октаэдрическую позицию, вытесняя галлий из узла решетки и порождая новые дефекты.

Для выращивания кристалла в шихту вводят церий в виде CeO₂ со степенью окисления (4+). А в выращенном кристалле церий находится степени окисления (3+). Таким образом, в уравнениях дефектообразования необходимо учесть перезарядку вводимого в шихту иона церия (24) и (25).

$$2\text{CeO}_2 \leftrightarrow 2\text{Ce}^{+++} + 4\text{O}^{--}, \tag{24}$$

$$2Ce^{+++} + 2e \leftrightarrow 2Ce^{+++}.$$
 (25)

Для перезарядки церия необходимы свободные электроны, которые можно получить из реакции (26), поскольку в соответствии с данными [43] испарение кислорода велико.

$$6O_0^{--} \leftrightarrow 3O_2 \uparrow + 6V_0^{++} + 12e. \tag{26}$$

Перезаряженный церий в виде Ce^{3+} может вытеснить ион галлия Ga^{3+} с его позиции и освобожденный галлий может захватить электроны, перезаряжаясь до Ga^+ (27), а затем с кислородом образует летучий Ga_2O (28).

$$2Ga^{+++} + 4e \leftrightarrow 2Ga^{+},\tag{27}$$

$$2\mathrm{Ga}^+ + O^{--} \leftrightarrow \mathrm{Ga}_2 O \uparrow . \tag{28}$$

Нескомпенсированными из уравнений (24) и (26) остались 6V₀⁺⁺, 30⁻⁻ и 6е: 2е учтены в уравнении (25), 4е – в уравнении (27) и 10⁻⁻ – в уравнении (28). Свободный кислород занимает кислородную вакансию, что описывается уравнением (29).

$$3V_{O}^{++} + 3O^{--} \leftrightarrow 3O_{O}^{--}.$$
(29)

Оставшиеся нескомпенсированные вакансии кислорода и электроны могут сформировать FЦ (Vo⁺⁺ + 2e) согласно уравнению (30):

$$\mathbf{3V}_{\mathbf{0}}^{++} + \mathbf{6e} \leftrightarrow \mathbf{3F}_{\mathbf{II}}.$$
(30)

Таким образом, установлено, что в кристалле Gd₃Al₂Ga₃O₁₂:Ce³⁺ (легированном церием) могут возникать дополнительные **F**_{II} за счет введения двуокиси церия.

Установлено, что полоса поглощения с максимумом $\lambda_{max} \sim 440$ нм связана с введением церия в кристалл и представляет собой огибающую нескольких пиков поглощения (рисунок 19).

По всей видимости, пики поглощения представляют собой разные типы F_{II}, в том числе сложные комплексы F_{II}.

Заключение

1) Впервые проведены комплексные исследования влияния изоморфного замещения в катионной подрешетке кристаллов $Gd_3Al_xGa_{5-x}O_{12}$ (x=1÷3) на оптические параметры: на спектральные зависимости показателей поглощения и ослабления, дисперсионные зависимости коэффициентов преломления. Показано, что:

– спектральные зависимости коэффициентов пропускания и показателей поглощения кристаллов Al:Ga=1:4, Al:Ga=2:3 и Al:Ga=3:2 представляют собой немонотонные зависимости с характерными гадолиниевыми полосами поглощения, интенсивность поглощения выше у кристаллов Al:Ga=1:4;

– увеличение концентрации галлия в катионной подрешетке приводит к увеличению коэффициентов преломления *N*.

2) Методом XANES-спектроскопии с применением эталонных образцов убедительно определена степень окисления церия в выращенных кристаллах Gd₃Al₂Ga₃O₁₂:Се, которая составляет 3+. Показано, что степень окисления церия в этих кристаллах даже после высокотемпературных изотермических отжигов на воздухе и в вакууме остается постоянной.

3) Легирование церием кристаллов Gd₃Al₂Ga₃O₁₂ оказывает сильное влияние на оптические параметры. Показано, что при легировании церием:

 Gd₃Al₂Ga₃O₁₂:Се окрашивается в лимонно-желтый цвет, что свидетельствует о возникновении центров окраски в кристалле;

на спектральных зависимостях показателей поглощения, помимо характерных гадолиниевых полос, наблюдаются две интенсивные широкие полосы с λ_{max} ~ 340 нм и ~ 440 нм;

– наблюдается увеличение коэффициентов преломления *N* в коротковолновой области до 380 нм.

4) Впервые установлено влияние высокотемпературных отжигов на воздухе (8 часов при температуре 1173 К и 10 часов при 1523 К) и в вакууме (30 минут при температуре 1273 К) на оптические свойства кристаллов:

 для всех кристаллов отжиги в указанных условиях не приводят к изменению окраски;

– отжиг на воздухе при 1173 К приводит к увеличению коэффициентов преломления N кристаллов Al:Ga=2:3 и Al:Ga=3:2 в диапазоне длин волн 300-650 нм, для Gd₃Al₂Ga₃O₁₂:Ce³⁺ – увеличению N в диапазоне длин волн до 500 нм и Al:Ga=3:2 и уменьшению – для Al:Ga=1:4.

5) Впервые разработаны непротиворечивые вероятностные модели дефектообразования во всех исследованных кристаллах $Gd_3Al_xGa_{5-x}O_{12}$ (x=1÷3) и $Gd_3Al_2Ga_3O_{12}:Ce^{3+}$.

Впервые показано, что во всех исследуемых кристаллах в процессе выращивания образуются ростовые дефекты Шоттки, F_Ц и V_Ц. Преобладающими дефектами в кристаллах являются F_Ц.

 Впервые показано, что в легированных церием кристаллах за счет вытеснения галлия в октаэдрической позиции образуются дополнительные F_Ц в виде сложных комплексов
 F_Ц, которые оказывают влияние на возникновение центров окраски.

6) В результате разработанной модели в кристаллах $Gd_3Al_2Ga_3O_{12}:Ce^{3+}$ впервые показано, что широкая полоса поглощения с максимумом $\lambda_{max} \sim 440$ нм имеет двойную природу, которая связана с легированием Ce^{3+} :

образованием дополнительных структурных ростовых дефектов типа F_Ц и их комплексов;

– межконфигурационными переходами 4f – 5d.

Цитируемая литература

1 Lecoq P. Development of new scintillators for medical applications // Nucl. Instrum. Methods Phys. Res., Sect. A. – 2016. – Vol. 809. – P. 130 – 139. 2 Dorenbos P. Electronic structure and optical properties of the lanthanide activated $RE_3(Al_{1-x}Ga_x)_5O_{12}$ (RE= Gd, Y, Lu) garnet compounds // J. Lumin.. – 2013. – Vol. 134. – P. 310–318.

3 Scintillator-oriented combinatorial search in Ce-doped $(Y,Gd)_3(Ga,Al)_5O_{12}$ multicomponent garnet compounds / K. Kamada, T. Yanagida, J. Pejchal et al. // J. Phys. D: Appl. Phys. -2011. - Vol. 44. - N. 50. - P. 505104.

4 Radiation imaging using a compact Compton camera mounted on a crawler robot inside reactor buildings of Fukushima Daiichi Nuclear Power Station / Y. Sato, Y. Terasaka, W. Utsugi et al. // J. Nucl. Sci. Technol. – 2018. – Vol. 55. – N. 9. – P. 965 – 970.

5 Nanoengineered Gd₃Al₂Ga₃O₁₂ Scintillation Materials with Disordered Garnet Structure for Novel Detectors of Ionizing Radiation / M. Korzhik, V. Alenkov, O. Buzanov et al. // Cryst. Res. Technol.. – 2019. – Vol. 54. – N. 4. – P. 1800172.

6 Irradiation studies of a multi-doped Gd₃Al₂Ga₃O₁₂ scintillator / V. Alenkov, O. Buzanov,
G. Dosovitskiy et al. // Nucl. Instrum. Methods Phys. Res., Sect. A. – 2019. – Vol. 916. – P. 226 – 229.

7 Martinazzoli L. Crystal fibers for the LHCb calorimeter upgrade // IEEE Transactions on Nuclear Science. – 2020. – Vol. 67. – N. 6. – P. 1003 – 1008.

8 A summary on an investigation of GAGG: Ce afterglow emission in the context of future space applications within the HERMES nanosatellite mission / G. Dilillo, R. Campana, N. Zampa et al. // International Society for Optics and Photonics. – 2020. – Vol. 11444. – P. 1144493.

9 Lecoq P., Annenkov A., Gektin A. Inorganic scintillators for detector systems. Physical principles and crystal engineering. – Berlin, Heidelberg: Springer, 2006. – 262 p.

10 Шендрик Р.Ю. Методы экспериментальной физики конденсированного состояния. Введение в физику сцинтилляторов.–Иркутск: изд-во Иркут. Гос. Ун-та, 2013.–110 с.

11 Ogiegło J.M. Luminescence and energy transfer in garnet scintillators: PhD.–Utrecht,2012.
 – 118 p.

12 Ляпидевский, В.К. Сцинтилляционный метод детектирования излучений. – М.: издво МИФИ, 1981. – 88 с.

13 ГОСТ 17038.0-79 Детекторы ионизирующих излучений сцинтилляционные. Общие положения по методам измерений сцинтилляционных параметров. – Введ. 01.01.1980. – М.: Государственный комитет СССР по стандартам: Изд-во стандартов, 1985. – 8 с.

14 Phosphorescence of Ce-doped Gd₃Al₂Ga₃O₁₂ crystals studied using luminescence spectroscopy / M.Kitaura, A.Sato, K.Kamada et al. // J. Appl. Phys.–2014.–Vol. 115.–N. 8.–P. 083517.

15 2inch diameter single crystal growth and scintillation properties of $Ce:Gd_3Al_2Ga_3O_{12}$ / K. Kamada, T. Yanagida, T. Endo et al. // J. Cryst. Growth. – 2012. – Vol. 352. – N. 1. – P. 88 – 90.

16 Effect of codoping on scintillation and optical properties of a Ce-doped $Gd_3Ga_3Al_2O_{12}$ scintillator / M. Tyagi, F. Meng, M. Koschan et al. // J. Phys. D: Appl. Phys. – 2013. – Vol. 46. – N. 47. – P. 475302.

17 Kimura H., Miyazaki A. Lattice parameter dependence of refractive index and dielectric constant of Czochralski grown rare-earth garnet single crystals in solid solution //Jap J. Appl. Phys. – 2002. – Vol. 41. – N. 8R. – P. 5334.

18 Systematic hardness measurements on some rare earth garnet crystal / D.B. Sirdeshmukh,L. Sirdeshmukh, K.G. Subhadra et al.//Bull. Mat. Sci.–2001.–Vol. 24.–N. 5.–P.469–473.

19 Growth and scintillation properties of 3 in. diameter Ce doped Gd₃Ga₃Al₂O₁₂ scintillation single crystal/K.Kamada, Y.Shoji, V.V.Kochurikhin et al.//J. Cryst. Growth.–2016.–V. 452.–P. 81–84.

20 Effect of Mg^{2+} ions co-doping on luminescence and defects formation processes in $Gd_3(Ga,Al)_5O_{12}$:Ce single crystals / V. Babin, P. Bohacek, L. Grigorjeva et al. // Opt. Mater. -2017. - Vol. 66. - P. 48 - 58.

21 Visualizing cation vacancies in Ce: $Gd_3Al_2Ga_3O_{12}$ scintillators by gamma-ray-induced positron annihilation lifetime spectroscopy / K. Fujimori, M. Kitaura, Y. Taira et al. // Appl. Phys. Exp. – 2020. – Vol. 13. – N. 8. – P. 085505.

22 Meng F. Development and Improvement of Cerium Activated Gadolinium Gallium Aluminum Garnets Scintillators for Radiation Detectors by Codoping: PhD.–Knoxville, 2015. –159 p.

23 Defects creation in the undoped $Gd_3(Ga,Al)_5O_{12}$ single crystals and Ce^{3+} -doped $Gd_3(Ga,Al)_5O_{12}$ single crystals and epitaxial films under irradiation in the Gd^{3+} -related absorption bands / P. Bohacek, A. Krasnikov, M. Kučera et al. // Opt. Mater. – 2019. – Vol. 88. – P. 601 – 605.

24 Crystal growth and characterization of Ce:Gd₃(Ga,Al)₅O₁₂ single crystal using floating zone method in different O₂ partial pressure / A. Yoshikawa, Y. Fujimoto, A. Yamaji et al. // Opt. Mater. -2013. - Vol. 35. - No 11. - P. 1882 - 1886.

25 Точечные дефекты в гадолиний-галлиевом гранате / Г.М. Кузьмичева, С.Н. Козликин, Е.В. Жариков и др. // Журн. неорг. хим. – 1988. – Т. 33. – № 9. – С. 2200 – 2204.

26 Конкуренция катионов в октаэдрических положениях галлиевых гранатов / Е.В. Жариков, В.В. Лаптев, А.А. Майер, В.В. Осико // Известия Академии наук СССР. Неорг. матер. – 1984. – Т. 20. – № 6. – С. 984 – 991.

27 Investigation of intrinsic and extrinsic defects in solid solution $Gd_3(Al, Ga)_5O_{12}$ crystals grown by the Czochralski method / J. Komar, P. Solarz, A. Jeżowski et al. // J. Alloys Compd.. – 2016. – Vol. 688. – P. 96 – 103.

28 Центры окраски в редкоземельных галлиевых гранатах / А.О. Матковский, Д.Ю. Сугак, У.А. Улманис, В.Г. Савицкий. – Пос. Саласпилс (ЛатвССР): ЛАФИ, 1987. – 42 с.

29 Воробьев Ю.П., Гончаров И.П., Гончаров О.И. Дефекты лазерных кристаллов реждкоземельных алюмо- и галлогранатов // Неорг. Матер. – 1994. – Т. 30. – С. 1576 – 1583.

30 Marcus P. Corrosion mechanism in theory and practice: third edition. – N-Y: CRC Press, 2012. – 930 p.

31 Многоугловые спектрофотометрические методы отражения для определения коэффициентов преломления / Е.В. Забелина, Н.С. Козлова, Ж.А. Гореева и др. // Известия вузов. МЭТ. – 2019. – Т. 22. – № 3. – С. 168–178.

32 ГОСТ 28869-90 Материалы оптические. Методы измерений показателя преломления. – М.: Изд-во стандартов, 2018. – 17 с.

33 Palik E.D. Handbook of optical constants of solids.-N-Y.:Academic press,1998.-3224 p.

34 Xu Y.N., Ching W.Y., Brickeen B.K. Electronic structure and bonding in garnet crystals $Gd_3Sc_2Ga_3O_{12}$, $Gd_3Sc_2Al_3O_{12}$, and $Gd_3Ga_3O_{12}$ compared to $Y_3Al_3O_{12}$ // Physical Review B. – 2000. – Vol. 61. – N. 3. – P. 1817.

35 ГОСТ 3520-92 Методы определения показателей ослабления. – Введ. 01.07.1993. –
 М.: Изд-во стандартов, 1992. – 19 с.

36 Кукетаев Т.А. Спектроскопия активированных ионных кристаллов. – Караганда: Изд-во КГУ, 1979. – 90 с.

37 Structural, optical and luminescent properties of undoped $Gd_3Al_xGa_{5-x}O_{12}$ (x = 0,1,2,3) and $Gd_2YAl_2Ga_3O_{12}$ single crystals / D. Spassky, F. Fedyunin, E. Rubtsova et al. // Opt. Mater. – 2022. – Vol. 125. – P. 112079.

38 Abnormal Site Preference of Al and Ga in Gd₃Al_{2.3}Ga_{2.7}O₁₂:Ce Crystals / M. Li, M. Meng,
J. Chen // Phys. status solidi (b). - 2021. - Vol. 258. - N. 2000603. - P. 1 - 7.

39 Шаскольская М.П. Кристаллография. – М.: Высшая шк., 1984. – 376 с.

40 Shannon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides // Acta Crystallogr. – 1976. – Vol. 32. – N. 5. – P. 751 – 767.

41 Kanai T., Satoh M., Miura I. Characteristics of a Nonstoichiometric $Gd_{3+\delta}(Al,Ga)_{5-\delta}O_{12}$:Ce Garnet Scintillator // J. Am. Ceram. Soc. – 2008. –Vol. 91.–N. 2.–P. 456 – 462.

42 Блистанов А.А. Кристаллы квантовой и нелинейной оптики: учебное пособие. – М.: «МИСиС», 2007. – 432 с.

43 Lamoreaux R.H., Hildenbrand D.L., Brewer L. High-temperature vaporization behavior of oxide II. Oxides of Be, Mg, Ca, Sr, Ba, B, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Zn, Cd and Hg // J. Phys. Chem. Ref. Data. – 1987. – Vol. 16. – N. 3. – P. 419 – 443.