на правах рукописи

Баженова Ольга Валерьевна

ФИЗИКО-ХИМИЧЕСКИЕ ОСНОВЫ И СПОСОБ ПЕРЕРАБОТКИ ОТВАЛОВ АММИАЧНО-КАРБОНАТНОГО ВЫЩЕЛАЧИВАНИЯ ОКИСЛЕННЫХ НИКЕЛЕВЫХ РУД

Специальность 05.16.02 – Металлургия чёрных, цветных и редких металлов

Автореферат диссертации на соискание ученой степени кандидата технических наук

Москва 2013

Работа выполнена в Федеральном государственном автономном образовательном учреждении высшего профессионального образования «Национальный исследовательский технологический университет «МИСиС».

Научный руководитель:

доктор технических наук, профессор

Медведев Александр Сергеевич

Официальные оппоненты:

Брюквин Владимир Александрович

доктор технических наук, профессор, заведующий лабораторией физико-химических основ металлургии цветных и редких металлов Института металлургии и материаловедения им.

А.А. Байкова РАН

Сидорин Геннадий Николаевич

кандидат технических наук, заместитель генерального директора ОАО ВНИИ

«Зарубежгеология»

Ведущая организация:

ОАО «Гиредмет» ГНЦ РФ

Защита диссертации состоится «30» октября 2013 г. в 14⁰⁰ в аудитории К-212 на заседании диссертационного совета Д 212.132.05 при Федеральном государственном автономном образовательном учреждении высшего профессионального образования «Национальный исследовательский технологический университет «МИСиС» по адресу: 119049, г. Москва, Крымский вал, д. 3.

С диссертационной работой можно ознакомиться в библиотеке НИТУ «МИСиС».

Отзывы на автореферат отправлять по адресу: 119049, г. Москва, Ленинский проспект, д. 4, НИТУ «МИСиС», ученому секретарю диссертационного совета, д.т.н., профессору Лобовой Т.А.

Автореферат разослан «30» сентября 2013 г.

Ученый секретарь диссертационного совета 1nh

Т.А. Лобова

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы. В мире наблюдается тенденция активного освоения месторождений окисленных никелевых руд. Спрос на никель в последние годы является довольно устойчивым. В России огромные запасы окисленных никелевых руд сосредоточены в Буруктальском, Сахаринском и Серовском месторождениях. Российские окисленные никелевые руды являются бедными, и в среднем содержат не более 1,2% Ni. Их перерабатывают пирометаллургическими способами, имеющими ряд существенных недостатков.

В зарубежной практике переработки бедных окисленных никелевых руд известны аммиачные технологии, в основе которых лежат процессы восстановительного обжига и аммиачно-карбонатного выщелачивания. В процессе обжига около 20% оксидов никеля и кобальта не восстанавливаются до металлического состояния. Оксид железа восстанавливается только на 4%. При аммиачно-карбонатном выщелачивании невосстановившиеся оксиды никеля, кобальта и железа остаются в хвостах выщелачивания. Хвосты подвергают многократной промывке и направляют в отвал. В связи с этим за долгие годы функционирования заводов скопились десятки миллионов тонн отвалов. Наряду с высоким содержанием железа (как правило, 40-50%) в них также содержатся незначительные количества промышленно ценных металлов, таких как никель (0,3-0,4%) и кобальт (0,08-0,12%).

Таким образом, техногенные отходы такого вида можно рассматривать в качестве дополнительных источников производства цветных металлов.

На сегодняшний день не существует промышленных технологий переработки никельсодержащих отвалов, и задача переработки такого рода сырья остается актуальной. Данная работа посвящена поиску решения этой задачи.

В качестве объекта исследования в работе выбраны отвалы аммиачнокарбонатного выщелачивания завода Никаро (Куба), принадлежащие российской компании «Альфа-группа». Исследования выполнены при финансовой поддержке:

- Фонда содействия развитию малых форм предприятий в научнотехнической сфере (программа «У.М.Н.И.К.») в 2009-2011 гг.
- гранта ДВО РАН «Исследование физико-химических особенностей алюминотермического извлечения металлов из металлсодержащих отходов машиностроительных и горнорудных производств» (номер проекта 12-III-A-04-015) в 2011-2012 гг.;
- гранта аналитической ведомственной целевой программы «Развитие научного потенциала высшей школы (2009-2010 гг.) «Физико-химические основы технологий переработки низкосортных вольфрамовых и молибденовых концентратов и никель-кобальтовых кеков» (проект №2.1.2/14111).

Цель работы. Разработать способ переработки отвалов аммиачнокарбонатного выщелачивания, обеспечивающий комплексность использования ресурсов и высокую степень извлечения элементов триады железа в конечный продукт.

В рамках достижения поставленной цели необходимо решить следующие задачи:

- уточнить химический, минералогический и гранулометрический состав отвалов аммиачно-карбонатного выщелачивания;
- изучить кинетические характеристики сернокислотного выщелачивания отвалов и установить механизм перевода элементов триады железа в раствор;
- изучить влияние лимонной кислоты на процесс сернокислотного выщелачивания отвалов;
- опробовать пирометаллургические варианты переработки никельсодержащих отвалов;
- предложить экономически и экологически эффективный способ комплексной переработки отвалов аммиачно-карбонатного выщелачивания;

 опробовать лучший способ переработки отвалов аммиачнокарбонатного выщелачивания применительно к вскрытию окисленных никелевых руд.

Методы исследования. Работа выполнена с применением стандартных методик и методов исследований: фотоколориметрического и атомно-абсорбционного анализа, мокрого ситового анализа, методов растровой электронной микроскопии, энергодисперсионного анализа, рентгенофлуоресцентной спектроскопии и рентгенофазового анализа.

Научная новизна.

- 1. На основании химического, минералогического и гранулометрического составов отвалов аммиачно-карбонатного выщелачивания выявлено, что никель в отвалах сосредоточен в составе железистой и силикатной шпинелей, что позволяет легко переводить железо, никель и кобальт в сульфатный раствор.
- 2. Определены кинетические параметры процесса сернокислотного выщелачивания отвалов аммиачно-карбонатного выщелачивания окисленных никелевых руд в интервале температур 20-80°С и концентраций серной кислоты 100-250 г/л. Выявлено, что процесс выщелачивания железа проходит в кинетической области, а никеля и кобальта во внутридиффузионной.
- 3. Обнаружено, что добавка лимонной кислоты (1-5%) способствует повышению извлечения никеля и кобальта в раствор (в среднем на 3-5%), что связано с образованием устойчивых хелатных комплексов.
- 4. Выявлено, что при кристаллизации сульфата железа из растворов выщелачивания сульфаты никеля и кобальта не соосаждаются с сульфатом железа, поскольку они не изоморфны.

Практическая значимость. На основании проведенных исследований предложен оптимальный способ комплексной переработки отвалов выщелачивания окисленных никелевых руд, включающий сернокислотное выщелачивание с добавкой лимонной кислоты (1-5%), кристаллизацию гидратов сульфата железа и двустадийное осаждение щёлочью или аммиаком

оставшегося железа на первой стадии и гидроксидов (оксидов) никеля и кобальта на второй стадии.

Предложен гидрометаллургический вариант двустадийного выщелачивания окисленной никелевой руды серной кислотой с извлечением никеля в сульфатный раствор ~80%.

На защиту выносятся:

- результаты исследований минералогического, химического и гранулометрического анализа;
- результаты кинетики выщелачивания отвалов серной кислотой и предложенный механизм перевода элементов триады железа в сульфатный раствор;
- результаты влияния лимонной кислоты на процесс сернокислотного выщелачивания;
- разработанные варианты переработки отвалов аммиачнокарбонатного выщелачивания и окисленной никелевой руды (гидрометаллургический и пирометаллургический варианты).

Апробация работы. Основные результаты работы доложены и обсуждены на международной конференции «Устойчивое развитие. Рациональное природопользование» (г. Тула, 2012 г.); IV-м международном конгрессе «Цветные металлы» (г. Красноярск, 2012 г.); конференции с международным участием «Никеленосные провинции Дальнего Востока» (г. Петропавловск-Камчатский, 2012 г.).

Публикации. Основное содержание работы опубликовано в изданиях, рекомендованных ВАК – 2, в прочих печатных изданиях – 1, в сборниках тезисов докладов научных конференций – 3, получено 1 ноу-хау. Всего – 7 научных работ.

Структура и объем диссертации. Диссертация состоит из введения, пяти глав, выводов и списка литературы. Диссертация изложена на 129 страницах, содержит 55 таблиц, 67 рисунков и список использованной литературы, включающий 59 наименований.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Общая характеристика работы и актуальность исследований приведены во введении.

В *первой главе* приведен аналитический обзор литературы по теме исследования, в котором рассмотрены промышленные типы окисленных никелевых руд, способы их переработки, а также основные методы переработки отвалов окисленных никелевых руд. Приведена оценка состояния мирового рынка никеля.

Окисленные никелевые руды имеют вторичное происхождение и состоят из гидратированных магнезиальных силикатов, алюмосиликатов и оксидов железа. Никель в них представлен минералами ревдинскитом $3(Ni,Mg)O\cdot2SiO_2\cdot2H_2O$ и гарниеритом $NiSiO_3\cdot mMgSiO_3\cdot H_2O$. В мире перерабатывают руды с содержанием никеля в среднем 1,4-2%. Российские окисленные руды более бедные, содержат в среднем 1,2% никеля. Основные их запасы сосредоточены на Урале.

В мировой практике переработки богатых (более 2% Ni) окисленных никелевых руд наиболее распространены пирометаллургические способы, имеющие конечной целью получение ферроникеля. Реже применяют плавку на штейн с последующим выделением никеля в металлическую фазу. Но, ввиду применения истощения природных ресурсов, сложных конструкций И высоких энергозатрат, пирометаллургические становятся менее привлекательными по сравнению с гидрометаллургическими способами. В гидрометаллургии окисленных никелевых руд промышленное применение нашли способы аммиачно-карбонатного выщелачивания (процесс Никаро, предложенный голландским исследователем М.Х. Кароном) сернокислотного выщелачивания (процесс Моа Бей).

По аммиачной технологии работают заводы Кубы, Австралии, Филиппин, Бразилии и Чехии. Головной передел аммиачной технологии – восстановительный обжиг окисленной никелевой руды. Задача обжига – селективное восстановление никеля и кобальта с целью последующего их

отделения при аммиачно-карбонатном выщелачивании железа и магния. В качестве восстановителей используют газообразные, жидкие и твердые реагенты. Процесс проводят в многоподовых печах при температуре 720-750°C. 15-20% оксидов никеля и кобальта в процессе обжига не восстанавливаются до металлического состояния и при аммиачно-карбонатном выщелачивании остаются в хвостах. Такое сырье в основном складируют на полигонах и до настоящего времени никак не перерабатывают.

Предложены способы переработки отвалов окисленных никелевых руд, включающие плавку в электрических печах, биовыщелачивание, экстракционные и сорбционные способы. Наряду с относительно высокими показателями извлечения цветных металлов, эти процессы имеют ряд недостатков, связанных с высоким расходом электроэнергии, а также стоимостью и расходом реагентов.

Вышеизложенное с учетом основных требований к технологиям – энергосбережения и комплексности использования ресурсов – определило направление исследований по переработке отвалов окисленных никелевых руд.

На мировом рынке никеля в 2013 году произошел резкий спад цен на металл, связанный с уменьшением спроса со стороны главного потребителя — Китая. Цена на никель снизилась с 24 \$/кг до 16,5 \$/кг. В связи с этим обстоятельством поиск путей снижения себестоимости металла является актуальной задачей для многих предприятий металлургической отрасли. Вовлечение в переработку отвального сырья в условиях жесткой конкуренции может стать альтернативным источником прибыли предприятия за счет выпуска попутной продукции из отвалов, а также сокращения экологических штрафов за складирование техногенных отходов. Такой подход может существенно снизить себестоимость основной продукции и сохранить конкурентоспособность предприятия в условиях нестабильной экономической ситуации.

Во второй главе приведены результаты исследований химического, гранулометрического и минералогического составов отвалов аммиачно-

карбонатного выщелачивания окисленных никелевых руд завода Никаро. Дана краткая справка о месторождении Никаро.

Химический состав пробы отвалов выполнен на анализаторе состава вещества «Мадіх» фирмы Philips. Установлено, что преобладающими компонентами в пробе являются железо, кремний, магний, алюминий, хром. Никель и кобальт (в составе оксидов) содержатся в отвалах в количестве 0,51% и 0,15% соответственно (табл.1).

Таблица 1. Химический состав пробы отвалов

Компонент	Содержание, %	Компонент	Содержание, %
$\sum \mathbf{Fe_{x}O_{y}}$	64,60	Na ₂ O	0,30
SiO_2	16,40	MgO	9,30
TiO ₂	0,17	K ₂ O	0,03
CaO	0,10	Cr_2O_3	2,1
Al_2O_3	4,40	MnO	0,70
CuO	0,03	СоО	0,15
NiO	0,51	$V_{ m o 6 m}$	0,03
ZnO	0,40	Итого:	99,22

Гранулометрический состав материала определяли методом мокрого ситового рассева (согласно ГОСТ 3584-72). Исследованную пробу по данным гранулометрического анализа можно отнести к шламистому продукту — выход класса крупностью -44 мкм составляет 67,61 %, а выход зернистой части +44 мкм - 32,39% (табл. 2).

Таблица 2. Гранулометрический состав пробы отвалов

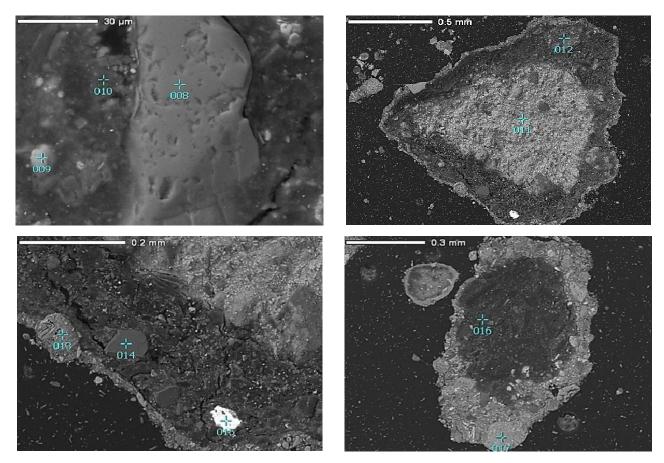
Класс			Содержание, %						
крупности, мкм	Выход, %	Fe ₂ O ₃	Al_2O_3	SiO ₂	MgO	MnO	Ni	Co	Cr
500+315	0,63	55,40	2,30	18,90	18,00	0,70	0,50	0,08	1,00
-315+250	1,27	53,40	2,20	18,80	18,00	0,80	0,60	0,09	1,00
-250+160	6,23	61,80	2,40	15,30	14,50	0,70	0,50	0,08	1,60
-160+100	6,57	58,00	2,70	16,20	16,00	0,60	0,40	0,05	2,60
-100+71	7,46	64,70	2,60	13,90	14,00	0,70	0,40	0,04	2,40
-71+44	10,23	65,80	2,40	13,40	13,00	0,70	0,40	0,03	2,10
∑ +44	32,39	62,50	2,50	14,77	14,42	0,68	0,43	0,05	2,11
-44+20	51,05	79,30	2,70	8,60	3,40	0,70	0,30	0,09	1,20
-20+10	13,62	61,50	2,50	14,70	6,80	0,80	0,50	0,10	0,80
-10+0	2,94	63,90	3,10	14,20	5,70	0,80	0,40	0,08	0,70
∑-44+0	67,61	75,05	10,07	10,07	4,18	0,72	0,34	0,09	1,10
Итого	100,00	64,60	4,40	16,40	9,30	0,70	0,40	0,12	1,40

Основным элементом в пробе является железо, в значительном количестве присутствуют кремнезем, оксид магния и оксид алюминия. Содержание кремнезема варьирует с тенденцией уменьшения от крупного класса к тонкому, отмечается обратная корреляционная зависимость между содержанием железа и кремнезема.

Между содержанием оксида магния и кремнезема наблюдается прямая корреляция: в зернистой части их абсолютные значения близки, в шламистой части содержание оксида магния по сравнению с кремнеземом снижается в 2,5 раза. Общих закономерностей в содержании никеля, кобальта и хрома по классам крупности не прослеживается. Для отвалов также характерна значительная доля двухвалентного железа (табл. 3).

Таблица 3. Гранулометрический состав пробы отвалов с распределением Fe_2O_3 и FeO по классам крупности

Класс крупности,	Divor 0/	Содержание, %		
МКМ	Выход, %	Fe_2O_3	FeO	
500+315	0,63	-	-	
-315+250	1,27	33,24	12,21	
-250+160	6,23	43,39	11,35	
-160+100	6,57	37,38	10,49	
-100+71	7,46	38,80	13,36	
-71+44	10,23	40,49	13,22	
-44+20	51,05	47,34	18,13	
-20+10	13,62	32,96	14,91	
-10+0	2,94	34,49	15,14	


Изучение минералогического состава выполнено с применением сканирующего цифрового электронного микроскопа JSM-5610LV (Япония) в отраженных электронах (BSECOMPO), оснащённого энергодисперисонным аналитическим спектрометром JED-2300 (Япония).

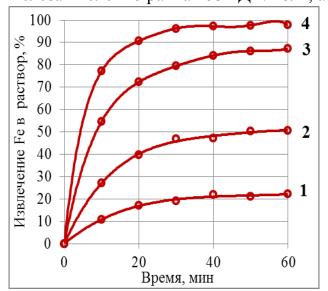
В пробе отвала обнаружены маггемит, пироксен, оливин, треворит, хромит, серпентинит. Нерудные фазы представлены метасиликатом натрия, полевым шпатом, слюдой, кварцем. Никель представлен несколькими минералами – треворитом и серпентинитом, а кобальт изоморфно входит в состав минералов никеля.

Электронно-зондовым микроанализом (рис.1) определён химический состав плотных частиц отвала (табл. 4), который свидетельствует о значительной неоднородности состава отвалов. Это необходимо учитывать при их переработке, а именно усреднять исходное сырье.

Таблица 4. Химический состав плотных частиц и агрегатов отвала

Номер спектра	MgO	Al ₂ O ₃	Cr ₂ O ₃	Fe ₂ O ₃	SiO ₂	MnO	NiO	TiO ₂	CaO	Всего
008	19,92	26,63	35,45	18,00	-	-	-	-	-	100,0
009	-	5,0	1,9	85,5	7,1	-	-	-	-	99,5
010	9,1	1,7	4,5	11,7	18,9	-	0,8	-	1,0	47,7
011	4,9	5,5	2,0	77,5	9,7	1	1	-	-	99,6
012	1,5	7,6	12,7	18,1	13,8	1	1	-	2,1	55,8
013	2,7	8,5	2,4	76,3	8,8	0,7	1	-	-	99,4
014	-	-	-	-	100,0	-	-	-	-	100,0
015	17,7	25,4	35,4	21,9	-	-	-	-	-	100,4
016	-	11,6	7,0	2,3	7,2	-	-	2,5	1,7	32,3
017	-	12,5	1,5	80,4	5,1	-	-	-	-	99,5

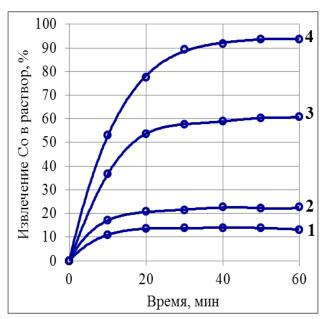
Рисунок 1. Микрофотографии аншлифа-брикета, изготовленного из пробы отвалов


В тремьей главе описаны методика эксперимента и результаты исследований кинетики сернокислотного выщелачивания отвалов, а также влияние различных факторов на извлечение элементов триады железа в сульфатный раствор.

Для проведения опытов по выщелачиванию использована установка, основным узлом которой является перемешивающее устройство (НПО «Экрос» марки ПЭ-8100). Установка способна поддерживать заданную скорость вращения мешалки при изменении вязкости перемешиваемой среды. Контроль уровня рН осуществляли посредством использования автоматического рН-метра Mettler Toledo MX 330.

Содержание элементов триады железа в растворах определяли методами атомной абсорбции (спектрометр Solaar 6M) и фотоколориметрическим (спектрометр СФ-103). Элементный анализ твёрдых продуктов осуществляли с помощью рентгенофлуоресцентного анализа с полным внешним отражением (прибор TXRF 8030C), а фазовый состав – методом рентгенофазового анализа на дифрактометре D8 Advance при Cu-Кα-излучении. Для анализа рентгенограмм использовали поисковую программу Eva с банком данных PDF-2. Микроанализ твёрдых продуктов проводили при использовании методов растровой электронной микроскопии и энергодисперсионного анализа (EDX) с применением сканирующего электронного микроскопа Carl Zeiss Ultra 55+, оснащённого энергодисперсионным детектором Oxford InstrumentsX-MAX 80.

 \mathbf{C} целью выявления лимитирующей стадии сернокислотного выщелачивания отвалов проведены опыты по изучению кинетики процесса. Определение энергии активации процесса выщелачивания отвалов серной 20-80°C кислотой провели интервале температур большом термодинамическом избытке серной кислоты ($[H_2SO_4]=250$ г/л, Т:Ж=1:100) (рис. 2-4). Для определения порядка процесса по реагенту кинетические кривые снимали при термодинамическом избытке серной кислоты (100-250 г/л, $T: \mathbb{K}=1:100$) и постоянной температуре (80°C) (рис. 5-7).


На основании полученных экспериментальных данных рассчитаны значения энергии активации (Еа) сернокислотного выщелачивания, а также порядок по реагенту для элементов триады железа. Установлено, что Еа для железа численно равна ~ 53 кДж/моль, а порядок по реагенту ~ 0.7 .

100 90 % Извлечение Ni в раствор, 80 3 70 60 50 40 2 30 20 1 10 0 20 Время, мин 60 0

Рисунок 2. Кинетические кривые выщелачивания железа при $[H_2SO_4]=250$ г/л и температурах: 1 – 20°C , $2-40^{\circ}\text{C}$, $3-60^{\circ}\text{C}$, $4-80^{\circ}\text{C}$.

Рисунок **3.** Кинетические кривые выщелачивания никеля при $[H_2SO_4]=250 г/л$ и температурах: 1 – 20°C , $2-40^{\circ}\text{C}$, $3-60^{\circ}\text{C}$, $4-80^{\circ}\text{C}$.

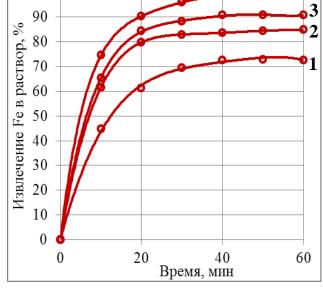
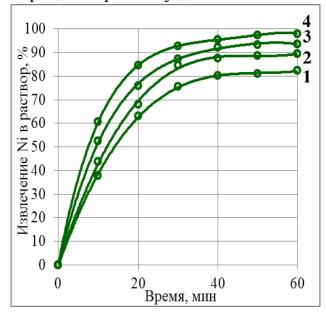



Рисунок **4**. Кинетические кривые выщелачивания кобальта при 20°C , $2 - 40^{\circ}\text{C}$, $3 - 60^{\circ}\text{C}$, $4 - 80^{\circ}\text{C}$.

Рисунок 5. Кинетические выщелачивания железа при t=80°C и $[H_2SO_4]=250$ г/л и температурах: 1 – $[H_2SO_4]$, г/л: 1 – 100, 2 – 150, 3 – 200, 4 -250.

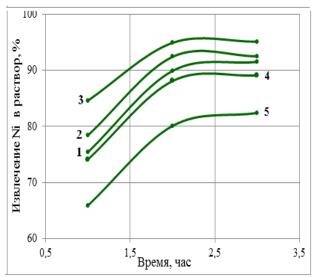
100

Эти данные свидетельствуют о том, что процесс протекает в кинетической области. Для никеля и кобальта расчётные значения энергии активации составили ~21 кДж/моль и ~14,5 кДж/моль соответственно, а порядок по реагенту для обоих элементов равен 1.

Рисунок 6. Кинетические кривые выщелачивания никеля при $t=80^{\circ}$ С и $[H_2SO_4]$, г/л: 1-100, 2-150, 3-200, 4-250.

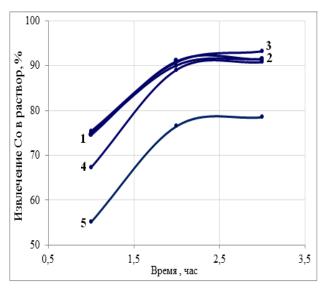
Рисунок 7. Кинетические кривые выщелачивания кобальта при $t=80^{\circ}$ С и $[H_2SO_4]$, г/л: 1-100, 2-150, 3-200, 4-250.

На начальных участках кинетических кривых скорость выщелачивания никеля и кобальта обратно пропорциональна корню квадратному из времени. Это свидетельствует о том, что скорости выщелачивания никеля и кобальта лимитирует внутренняя диффузия (диффузия серной кислоты внутрь твёрдой частицы пульпы). Поэтому длительность выщелачивания всех металлов можно существенно сократить путем тонкого измельчения частиц отвала и повышения температуры.


В исходном сырье содержится значительное количество кремния, который входит в состав никелевых минералов, что может приводить к потерям никеля и кобальта при выщелачивании. Из литературных источников известно, что при выщелачивании силикатных никелевых руд для разрушения силикатного слоя Si-O, который блокирует никель и кобальт, входящие в состав силикатных минералов, в раствор дополнительно вводят лимонную кислоту.

Лимонная кислота действует как хелатообразователь (при полной диссоциации), формируя цитратные комплексы никеля и кобальта по реакциям 1, 2:

$$C_6 H_8 O_7 \leftrightarrow (C_6 H_5 O_7)^{3-} + 3H^+$$
 (1)


$$2(C_6H_5O_7)^{3-} + 3Ni(Co)^{2+} \leftrightarrow [Ni(Co)]_3(C_6H_5O_7)_2 \tag{2}$$

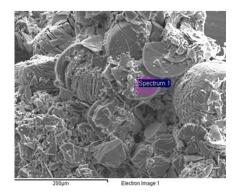
Установлено, что небольшие добавки лимонной в количестве 1-5% от массы отвала положительно влияют на извлечение никеля и кобальта в раствор (рис. 8, 9).

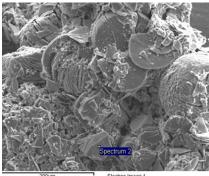
Рисунок 8. Влияние добавки лимонной кислоты на процесс выщелачивания никеля ($[H_2SO_4]=250$ г/л, Т:Ж=1:4, t=80-85°C), % массы отвала:

$$1 - 0, 2 - 1, 3 - 5, 4 - 10, 5 - 100.$$

Рисунок 9. Влияние добавки лимонной кислоты на процесс выщелачивания кобальта ($[H_2SO_4]=250$ г/л, Т:Ж=1:4, t=80-85°C), % массы отвала:

$$1-0, 2-1, 3-5, 4-10, 5-100.$$


Сульфатные растворы после выщелачивания (рН \approx 0,8; $\rho\approx$ 1,2 г/см³) содержат, г/л: Fe - 100, Ni - 1, Co - 0,3. Большую часть железа (до 70%) из растворов выщелачивания выделяли в составе четырехводного сульфата, что подтверждено рентгенофазовым и электронно-зондовым микроанализом (табл. 5, рис. 10).


Кристаллизацию проводили на водяной бане до плотности пульпы 1,45-1,50 г/см³ при температуре 60 ± 5 °C. Сульфаты никеля и кобальта при условиях кристаллизации практически полностью остаются в маточном растворе и не

соосаждаются с осадком сульфата железа. Из сульфата железа большую часть серной кислоты возможно регенерировать методом парового гидролиза.

Таблица 5. Химический состав плотных частиц осадка сульфата железа

Мо отголето			Содержа	ние, %		
№ спектра	Fe	S	О	Mg	Al	Mn
спектр 1	13,71	20,68	64,26	0,86	0,31	0,17
спектр 2	41,73	16,10	40,45	0,91	0,81	-
спектр 3	34,61	5,47	44,09	0,60	2,48	0,42

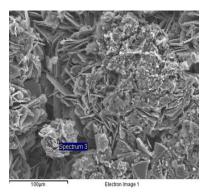
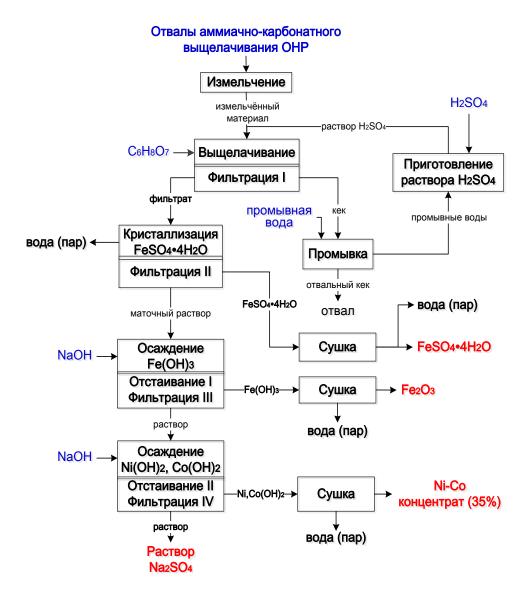



Рисунок 10. Микрофотографии плотных частиц осадка сульфата железа

Маточные растворы (рН≈1) после кристаллизации сульфата железа содержат, г/л: Fe - 80, Ni - 3, Co - 0,8. Из растворов железо, никель и кобальт выделяли в составе гидроксидов двумя способами: щелочным и аммиачным. Осаждение проводили в две стадии: на первой стадии при рН=4,5-5 выделяли железо в составе гидроксида (III). На второй стадии выделяли гидроксиды никеля и кобальта при рН=9-10. Осадок гидроксида железа III может быть использован в черной металлургии, а никель-кобальтовый коллективный продукт - в основном производстве. На основании проведенных исследований разработаны и опробованы два способа переработки отвалов (рис. 11, 12). Рекомендованы следующие режимы:

- выщелачивание: $[H_2SO_4]=250$ г/л, отношение Т:Ж=1:4, время 4 часа, скорость перемешивания 450 об/мин, температура 80° С, 5% С₆H₈O₇.
- *кристаллизация*: температура $60^{\circ} \pm 5^{\circ}$ С, время 2 часа;
- *осаждение:* скорость перемешивания 200 об/мин, скорость подачи реагента 12 мл/час, отстаивание пульпы после каждой стадии 7-8 часов.
- *сушка:* температура 100°C, время 1 час.

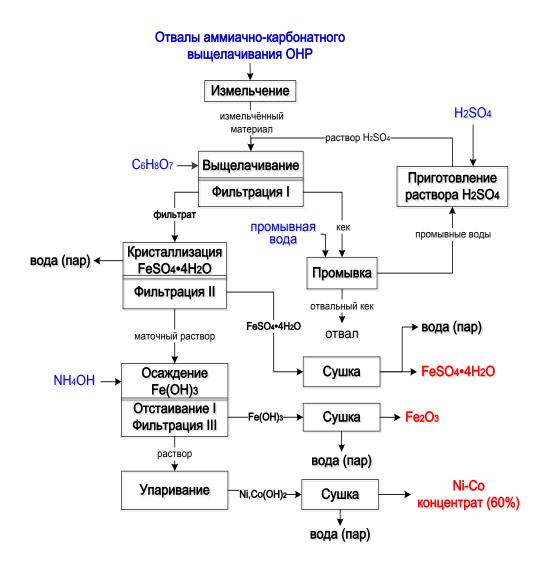


Рисунок 11. Способ I переработки отвалов аммиачно-карбонатного выщелачивания окисленных никелевых руд

Извлечение металлов в конечные продукты по схеме, представленной на рис. 11, составило, %: Fe – 95, Ni – 83, Co – 80. Конечный продукт схемы – Ni-Co концентрат, содержащий суммарно около 35% оксидов никеля и кобальта. Состав концентрата приведен в табл. 6.

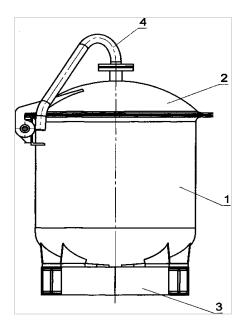
Таблица 6. Состав Ni-Co оксидного концентрата, полученного по способу I

Оксид	Содержание, %	
Fe_2O_3	64,03	
NiO	28,08	
CoO	7,89	

Рисунок 12. Способ II переработки отвалов аммиачно-карбонатного выщелачивания окисленных никелевых руд

Извлечение металлов в конечные продукты по схеме, представленной на рис. 12, составило, %: Fe - 95, Ni - 84, Co - 82. Конечный продукт схемы - Ni-Co концентрат, содержащий суммарно более 60% оксидов никеля и кобальта. Состав концентрата приведен в табл. 7.

Таблица 7. Состав Ni-Co оксидного концентрата, полученного по способу II


Оксид	Содержание, %	
Fe_2O_3	35,62	
NiO	50,62	
CoO	14,20	

Альтернативные (пирометаллургические) варианты переработки отвалов изложены в *четвертой главе*. Приведены результаты сульфидирующей плавки, а также алюминотермического восстановления отвалов.

Наиболее простой и применимой к окисленному никелевому сырью, имеющему малое содержание никеля, является технология сульфидирующей плавки. В рамках опробования сульфидирующей плавки отвалов проведены две серии экспериментов: сульфидирование пиритом и сульфидирование серой. Экспериментально установлено, что расплавление материала наступает при температуре 1350 °C. В качестве легкоплавкой добавки использовали кварцевый флюс в количестве 15% от массы отвалов. Перемешивание расплава осуществляли аргоном. По окончании процесса расплав отстаивали и охлаждали вместе с печью. При использовании в качестве сульфидизатора пирита установлено, что максимальное извлечение никеля (60%) в штейн достигается при следующих параметрах процесса: t=1300°C, расход пирита 12,2 кг на 100 кг отвалов. При использовании в качестве сульфидизатора серы наибольшее извлечение никеля (76,2%) достигается при температуре процесса 2300 °C и расходе серы, равном 10% от массы шихты.

Опробована идея получения легированного никелем сплава железа методом алюминотермического восстановления.

Процесс проводили в графитовом тигле в закрытом стальном реакторереторте, обеспечивающем герметичность реакционной зоны (рис. 13). Отвод газов осуществляли через систему трубопроводов от реторты в камеру, где происходила нейтрализация газов путём их смешивания с известковым раствором. Для удаления излишней влаги из пробы отвала проводили термообработку исходного материала при 250°C и 500°C. Убыль массы составила 6,25%. В качестве восстанавливающего реагента использовали порошок алюминиевый марки ПА-1 (ГОСТ 6058-73). Расход алюминиевого порошка составляет 25 кг на 100 кг отвала. В результате проведения реакции получены сплав на основе железа, легированный никелем и кобальтом и шлак.

Рисунок 13. Реактор для алюминотермического восстановления:

- 1- термореакционный контейнер;
- 2- герметично уплотняемая крышка;
- 3 сварной фундамент;
- 4 трубопровод.

Содержание никеля в металлическом слитке при температуре прокалки пробы отвала 250 °C составило 0,62% (степень извлечения 70%), в то время как при температуре прокалки пробы отвала 500 °C содержание никеля в металлической фазе составило 0,75% (степень извлечения 80%). В шлаке сконцентрированы оксиды алюминия, железа и кремния.

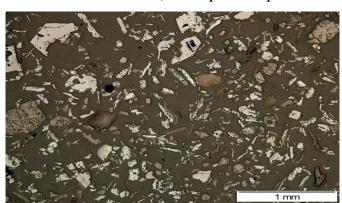
Хотя в результате исследований по пирометаллургической переработке отвалов аммиачно-карбонатного выщелачивания окисленных никелевых руд получены неплохие результаты, эти методы для переработки отвалов в настоящее время нерентабельны.

Наиболее привлекательным с точки зрения экономики является гидрометаллургический (сернокислотный) вариант.

Сернокислотный вариант опробован для выщелачивания колумбийских окисленных никелевых руд. Он основан на результатах, полученных при сернокислотной переработке отвалов завода Никаро. Отличие состоит лишь в том, что применено двустадийное выщелачивание. Результаты исследований приведены в *пятой главе*.

Для определения содержания основных компонентов в пробе руды (табл. 8) использован метод искровой масс-спектрометрии индуктивно-связанной плазмы (ICP-MS, масс-спектрометр с двойной фокусировкой JMS-ВМ2 производства JEOL, Япония).

Основным компонентом в колумбийской руде является оксид железа (73,2%), в значительном количестве присутствует оксид алюминия — 8,4%. Промышленно ценным компонентом является никель, содержание которого составляет 1,43%. Попутные компоненты - хром и кобальт с содержанием 0,62% и 0,15% соответственно.


Таблица 8. Элементный состав пробы колумбийской окисленной никелевой руды

Компонент	Содержание, %	Компонент	Содержание, %
Na ₂ O	0,042	K ₂ O	< ∏O
MgO	0,48	CaO	< ∐O
Al_2O_3	8,4	TiO ₂	0,072
$P_2O_5^*$	< ∐O	MnO	1,4
S _{общ} *	0,15	Fe ₂ O ₃	73,2

* информационные данные

Элемент	Содержание, г/т	Элемент	Содержание, г/т
Cr	6223	Co	1507
Ni	14316	Zn	429

Минеральный состав пробы (рис. 14-17) исследовали с использованием поляризационного микроскопа ECLIPSE LV100-POL, оптического стереомикроскопа SMZ-1500, оснащенного цифровой фотомикрографической системой DS-5M-L1, и стереомикроскопа SMZ-645.

Рисунок 14. Общий вид магнитной фракции



Рисунок 15. Окисленный магнетит

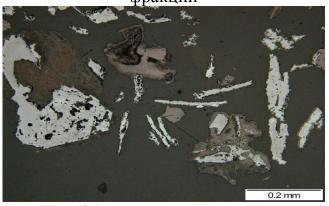
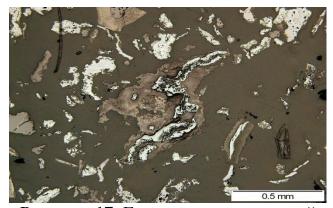
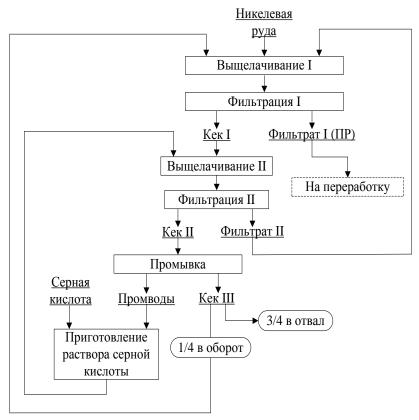



Рисунок 16. Полуокисленный магнетит


Рисунок 17. Гидрогетиты магнитной фракции

Исследования по сернокислотному выщелачиванию окисленной никелевой руды проведено с использованием чанового выщелачивания при перемешивании в аппаратах культивирования АК-203 (рис. 18). Основные узлы установки АК-203 — реактор объемом 3 л, блок управления и блок измерения. Реактор представляет собой стеклянный цилиндр, крышку из нержавеющей стали с пеногасителем и отверстием для подачи реагентов, отбора проб и отведения газов. Устройство также снабжено мешалкой нижнего привода.

Рисунок 18. Установка выщелачивания АК-203

Экспериментально установлено, что извлечение никеля (80%) максимальное сульфатный раствор достигается при двустадийном выщелачивании (рис. 19) начальной концентрацией серной кислоты $T: \mathcal{K}=1:4,$ 90 °C $240 \ \Gamma/\pi$, температуре продолжительностью процесса 3 часа каждой стадии.

Рисунок 19. Схема двустадийного сернокислотного выщелачивания колумбийской окисленной никелевой руды

Применение гидрометаллургического варианта переработки не только к отвальным продуктам металлургической переработки окисленных никелевых руд, но и к окисленным никелевым рудам является перспективным, так как при их вскрытии достигаются высокие извлечения элементов триады железа в сульфатный раствор.

ОБЩИЕ ВЫВОДЫ ПО РАБОТЕ

- **1.** В результате анализа научной литературы выявлено, что в настоящее время ведется активное освоение месторождений окисленных никелевых руд. Спрос на металл на мировом рынке остается высоким.
- **2.** Основными недостатками существующих гидрометаллургических технологий производства никеля являются высокие потери металла с хвостами выщелачивания. В связи с этим за долгие годы функционирования заводов скопились сотни миллионов тонн отвалов, содержащих в среднем 0,4% никеля.
- **3.** В качестве объекта исследования выбраны отвалы аммиачнокарбонатного выщелачивания окисленных никелевых руд предприятия Никаро. Основными компонентами отвала являются оксиды железа — 64,6%. Кроме того, присутствуют кремнезем, оксид алюминия, оксид магния. Среднее содержание никеля и кобальта 0,4% и 0,12%, соответственно.
- 4. Изучена кинетика сернокислотного выщелачивания с переводом элементов триады железа в сульфатный раствор в интервале температур 20-80°С и [H₂SO₄]=100-250 г/л. Установлено, что на начальных стадиях выщелачивания железа реакция проходит в кинетической области энергия активации процесса составляет 51 кДж/моль, порядок по реагенту равен 0,7. Выщелачивание никеля и кобальта на начальных стадиях лимитирует внутренняя диффузия. Расчётные значения энергий активации составили ~21 кДж/моль для Ni и ~14,5 кДж/моль для Со, а порядок процесса по реагенту для обоих элементов равен 1.
- **5.** Незначительные добавки лимонной кислоты (1-5% от массы отвалов) в процессе сернокислотного выщелачивания способствуют

увеличению извлечения никеля и кобальта за счет образования устойчивых хелатных комплексов.

- **6.** Большую часть железа (порядка 70%) из сульфатных растворов предлагается выделять в составе четырехводной соли сульфата железа. Сульфаты никеля и кобальта с сульфатом железа изоморфно не соосаждаются, а теряются только с влагой осадка.
- 7. Из маточных растворов оставшееся железо легко выделить в составе гидроксида. При осаждении гидроксида железа щёлочью значительная часть никеля и кобальта теряется с осадком гидроксида железа за счёт соосаждения, при осаждении аммиаком потери никеля и кобальта практически отсутствуют за счет образования хорошо растворимых аммиачных комплексных соединений. Из маточных растворов после осаждения железа никель и кобальт выделяется либо в составе гидроксидов, либо оксидов.
- **8.** На основании полученных экспериментальных данных предложены две технологические схемы переработки отвалов аммиачно-карбонатного выщелачивания, включающие сернокислотное выщелачивание отвалов, кристаллизацию сульфата железа из растворов выщелачивания и осаждение железа, никеля и кобальта в две стадии щёлочью или аммиаком.
- 9. Опробованы пирометаллургические способы переработки отвалов: сульфидирующая плавка с получением никелевого штейна и способ алюминотермического восстановления с получением сплава на основе железа, легированного никелем. В результате сульфидирующей плавки степень извлечения никеля в штейн составила 76%, при алюминотермическом восстановлении 80%. Использование пирометаллургических методов переработки экономически неэффективного вследствие высоких затрат на электроэнергию и реагенты (алюминий).
- **10.** Предложена технологическая схема переработки колумбийской руды, включающая двустадийное выщелачивание серной кислотой при температуре 90°C, начальной концентрации серной кислоты 240 г/л, соотношении твёрдого к жидкому 1:4, продолжительности 3 ч. Извлечение никеля при реализации этой схемы достигает 80%.

Основное содержание работы отражено в публикациях:

- 1. Санникова О.В., Медведев А.С. Утилизация отвалов никелевых предприятий, перерабатывающих окисленные руды по аммиачно-карбонатной технологии// Металлург, 2012, №7, стр.72-77.
- 2. A.S. Medvedev, O.V. Sannikova Recycling tailings from nickel plants that process oxide ores by ammonia-carbonate technology// Metallurgist, November 2012, Volume 56, Issue 7-8, pp. 537-545.
- 3. Санникова О.В., Чириков А.Ю., Медведев А.С., Медков М.А., Юдаков А.А. Переработка техногенных никелевых отходов металлургического производства методом алюмотермии// Сталь. 2012. №4, стр. 73-76.
- 4. Баженова О.В., Медков М.А., Юдаков А.А., Чириков А.Ю., Медведев А.С. О способах переработки отходов окисленных никелевых руд// Сб.тр. международной конференции «Устойчивое развитие. Рациональное природопользование». Тула: 2012, стр. 32-34.
- 5. Баженова О.В., Медведев А.С., Медков М.А., Чириков А.Ю. Варианты гидрометаллургической переработки техногенных отходов окисленных никелевых руд//Сб.тр. «IV Международный конгресс «Цветные металлы-2012». Красноярск: 2012, стр. 139-143.
- 6. O.V. Bazhenova, A.S. Medvedev, M.A. Medkov, A.Yu. Chirikov Hydrometallurgical variants of processing of lateritic ores tailings// The Fourth International Congress of Non-Ferrous and Rare Metals-2012. Krasnoyarsk: 2012, pp. 80-82.
- 7. Ноу-хау № 8-341-2013 ОИС от 27.03.2013 г. Медведев А.С., Баженова О.В. «Способ извлечения никеля и кобальта из отвалов выщелачивания окисленных никелевых руд». Зарегистрировано в Депозитарии ноу-хау Отдела защиты интеллектуальной собственности НИТУ «МИСиС».