На правах рукописи

МОВЕНКО ДМИТРИЙ АЛЕКСАНДРОВИЧ

ИССЛЕДОВАНИЕ РАСКИСЛЕНИЯ И МОДИФИЦИРОВАНИЯ МЕТАЛЛА С ЦЕЛЬЮ СОВЕРШЕНСТВОВАНИЯ ТЕХНОЛОГИИ ПРОИЗВОДСТВА НИЗКОЛЕГИРОВАННОЙ ТРУБНОЙ СТАЛИ

Специальность 05.16.02 – «Металлургия черных, цветных и редких металлов»

Автореферат диссертации на соискание ученой степени кандидата технических наук

Диссертационная работа выполнена на кафедре «Металлургии стали и ферросплавов» Национального исследовательского технологического университета «МИСиС»

Научный руководитель:

доцент каф. МСиФ НИТУ «МИСиС»,

кандидат технических наук

Котельников Георгий Иванович

Официальные оппоненты:

помощник генерального директора ОАО

"Электросталь", главный научный сотрудник,

доктор технических наук

Падерин Сергей Никитович

профессор Московского Государственного

Вечернего Металлургического Института,

доктор технических наук

Смирнов Николай Александрович

Ведущая организация: ОАО НПО "Центральный научно-

исследовательский институт технологии

машиностроения" (ЦНИИТМАШ)

Защита диссертации состоится «24» октября 2013 года в 10 часов на заседании диссертационного совета Д212.132.02 при Национальном исследовательском технологическом университете «МИСиС» по адресу:

119049, Москва, Ленинский проспект, д. 6, корп. 1, ауд. А-305.

С диссертацией можно ознакомиться в библиотеке Национального исследовательского технологического университета «МИСиС».

Автореферат диссертации размещен на официальном сайте Национального исследовательского технологического университета «МИСиС» - http://misis.ru. Объявление о защите размещено на официальном сайте Министерства образования и науки РФ - http://mon.gov.ru.

Отзывы на автореферат диссертации (в двух экземплярах, заверенные печатью учреждения) просьба направлять по адресу: 119049, г. Москва, Ленинский проспект, д.4, Ученый Совет. Копии отзывов можно прислать на e-mail: damovenko@gmail.com.

Автореферат разослан «23» сентября 2013 года.

Ученый секретарь диссертационного совета Д 212.132.02, кандидат технических наук, доцент

M.

А.В. Колтыгин

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы

Качество низколегированной трубной стали может быть повышено за счет снижения содержания неметаллических включений и управления их составом. Исследованиями последних лет установлено, что отдельные типы включений могут в несколько раз ускорять коррозионное разрушение промысловых труб. Они получили название коррозионноактивных неметаллических включений (КАНВ). Феномен КАНВ известен достаточно давно, однако мнения о природе этих включений, механизме их влияния на процессы коррозии стали, способах снижения их количества за счет оптимизации внепечной обработки, способах предотвращения образования этих включений остаются весьма противоречивыми. В то же время без решения этих вопросов невозможно обеспечить необходимый уровень качества стали для труб ответственного назначения.

Цель работы

Совершенствование технологии раскисления и модифицирования трубной стали, снижение в ней содержания коррозионноактивных неметаллических включений.

Задачи исследования

- 1. Исследование механизма и разработка модели воздействия коррозионноактивных неметаллических включений на металл.
- 2. Разработка методики расчета растворимости водорода в оксидных системах в зависимости от парциального давления кислорода и температуры.
- 3. Анализ термодинамических данных и выбор достоверной константы равновесия реакции раскисления железа алюминием.

4. Снижение содержания коррозионноактивных неметаллических включений в низколегированной трубной стали за счет оптимизации режимов модифицирования металла церием.

Научная новизна

- 1. Предложен механизм формирования очага взаимодействия КАНВ с металлом в водной среде, заключающийся в увеличении объема КАНВ в результате гидратации и образовании зон растяжения и сжатия металла вокруг КАНВ; разработана модель распределения механических напряжений вокруг гидратирующих включений.
- 2. Установлено что присадки церия способствуют образованию защитной оболочки из оксидов церия на КАНВ, что снижает содержание КАНВ и уменьшает их вредное влияние; разработана расчетная методика, позволяющая определять оптимальную концентрацию церия в зависимости от содержания кислорода и серы в металле.
- 3. Установлена количественная зависимость растворимости водорода в оксидных системах от парциального давления кислорода. Предложена методика расчета растворимости водорода в шлаках и оксидных неметаллических включениях, учитывающая состав взаимодействующих фаз, раскисленность и температуру системы.

Практическая значимость

- 1. Разработана и опробована технология внепечной обработки трубной стали с присадкой оптимального количества церия, обеспечивающая значительное снижение содержания КАНВ.
- 2. Определен перечень неметаллических включений, которые могут обладать коррозионной активностью при взаимодействии с водной средой.
- 3. На основе содержательного анализа массива равновесных данных раскисления железа алюминием предложено уточненное значение константы равновесия этой реакции.

Апробация работы

Материалы диссертации доложены и обсуждены на XII международном Конгрессе сталеплавильщиков (г. Выкса, 22–26 октября 2012 г.), VII Международной школе-конференции молодых ученых и специалистов IHISM'11 (г. Звенигород, 24–28 октября 2011 г.), 66–х Днях науки студентов МИСиС: международные, межвузовские и институтские научно-технические конференции (г. Москва, 2011 г.)

Структура и объем работы

Диссертация изложена на 151 странице машинописного текста и содержит введение, 6 глав, общие выводы по работе, 62 рисунка, 23 таблицы, 3 приложения. Список использованной литературы состоит из 107 наименований.

Публикации

По результатам диссертационной работы опубликовано 6 печатных работ, в том числе 3 статьи в издании из списка, рекомендованного ВАК.

Достоверность научных результатов

Достоверность полученных результатов подтверждается применением современных методов и методик исследования, хорошей воспроизводимостью и согласованностью результатов исследований, положительными результатами использования в промышленности разработанных рекомендаций по микролегированию стали 13ХФА церием, обеспечивающих требуемое низкое содержание КАНВ. Текст диссертации и автореферат проверены на отсутствие плагиата с помощью программы "Антиплагиат" (http://antiplagiat.ru).

СОДЕРЖАНИЕ РАБОТЫ

Во введении дана общая характеристика диссертационной работы, обоснована актуальность темы диссертации. Изложены цели и задачи исследования.

В первой главе выполнен анализ литературных данных по современной технологии раскисления и внепечной обработки трубной стали. Одним из требований, предъявляемых к качеству современных трубных сталей, является требование по содержанию КАНВ – не более 2 включений на квадратный миллиметр. К КАНВ относят, как правило, алюминаты кальция, которые могут быть покрыты сульфидами кальция или марганца. В то же время набор таких включений может быть гораздо шире, но к настоящему времени он не оценен расчетным образом. К TOMY же механизм воздействия даже коррозионноактивных неметаллических включений на металл в водной среде до конца не ясен.

Решить проблему КАНВ не представляется возможным без надежной оценки общего содержания кислорода в стали, которое обычно определяется концентрацией алюминия. Известные значения константы равновесия реакции раскисления железа алюминием различаются на несколько порядков. В связи с этим встает проблема анализа имеющихся термодинамических данных по раскислению железа алюминием с целью выбора наиболее достоверных.

При образовании включений в них растворяется водород. В ходе охлаждения металла водород может выделяться из включений и создавать растягивающие напряжения в окружающей металлической матрице. Это приводит к повышенной коррозии и образованию трещин в металле. Однако методики расчета растворимости водорода в оксидных системах, в том числе во включениях, не существует, что затрудняет оценку влияния этого фактора на сопротивление стали коррозионному растрескиванию под напряжением.

В связи с этим изучение коррозионной активности различных неметаллических включений, механизма воздействия КАНВ на металл, создание модели этого механизма являются очень важными для

совершенствования процессов раскисления и модифицирования металла (в том числе РЗМ) с целью разработки технологии производства низколегированной трубной стали, обеспечивающей требуемый уровень содержания КАНВ.

Во второй главе проведен содержательный анализ первичных экспериментальных данных реакции раскисления железа алюминием (1) с целью выбора достоверной константы равновесия. Предложена методика оценки погрешности константы по данным о погрешности измерения концентраций алюминия и кислорода $\Delta[Al]$ и $\Delta[O]$ в железе. Для низких концентраций кислорода и алюминия можно записать:

$$Al_2O_{3(ms)} = 2\underline{Al} + 3\underline{O}; \quad K = [Al]^2 \cdot [O]^3$$
(1)

Дифференциал выражения $\ln K = 2 \ln [Al] + 3 \ln [O]$ даёт относительную погрешность константы $\frac{\Delta K}{K}$:

$$\frac{\Delta K}{K} = 2\frac{\Delta[Al]}{[Al]} + 3\frac{\Delta[O]}{[O]},\tag{2}$$

Выразив [O] из уравнения (1), получим выражение (3), которое дает оценку погрешности константы при различных концентрациях алюминия

$$\frac{\Delta K}{K} = 2\frac{\Delta[Al]}{[Al]} + 3\frac{\Delta[O] \cdot [Al]^{\frac{2}{3}}}{K^{\frac{1}{3}}}$$
 (3)

Из (3) следует, что при погрешностях $\Delta[O]=2\cdot10^{-4}$ и $\Delta[AI]=0,002\%$ (данные L.Rohde и др.) минимальная погрешность константы $\Delta K/K=1,65$ и наблюдается при 0,006% алюминия. Таким образом, наиболее достоверное значение константы отвечает области достаточно низких концентраций алюминия (не более 0,01%).

Анализ массива экспериментальных данных (Hilty, Schenk, Seo, Fruehan, Kang, Rohde, Janke, Dimitrov) в широком интервале концентраций алюминия – 0...10 % показал, что кривая раскисления, построенная по нижним точкам, полученным методом отбора проб (L.Rohde и др.), минимизирует погрешность константы, связанную с образованием взвеси Al_2O_3 в металле, и совпадает с кривой, построенной по методу измерения ЭДС (Janke, Dimitrov). Последовательная обработка огибающей кривой раскисления позволила

получить при 1600 °C достоверное значение константы равновесия $K = a_{Al}^2 \cdot a_O^3$, составляющее $1,78 \cdot 10^{-14}$ и параметр e_O^{Al} , равный -0,25. Параметр e_{Al}^{Al} принят равным 0,045 (данные Sigworth & Elliott). Остальные параметры, включая второго порядка, в расчете не учитывали.

На рис. 1 представлены анализ и обработка экспериментальных исследований.

Рис. 1 — Раскисление железа алюминием при 1600 °C. Анализ и обработка экспериментальных исследований. Штриховая линия отвечает производению растворимостей $[\%Al]^2 \cdot [\%O]^3$; сплошная кривая — произведению активностей $a_{Al}^2 \cdot a_O^3$; пунктиром обозначен предел обнаружения

В результате данного исследования получены достоверные значения константы равновесия реакции раскисления железа алюминием при 1600 °C $K = a_{Al}^2 \cdot a_O^3 = 1,78 \cdot 10^{-14}$ и параметр $e_O^{Al} = -0,25$, которые были использованы в расчетах для совершенствования технологии раскисления стали 13ХФА.

В третьей главе разработана методика оценки растворимости водорода в оксидных неметаллических включениях с использованием экспериментальных данных по растворимости водорода в соответствующих шлаках. Идея методики заключается в допущении, что водород может растворяться в шлаке одновременно в гидридной и гидратной формах:

$$0.5 (CaO) + 0.5 H_{2(\Gamma)} = (Ca_{0.5}H) + 0.25 O_{2(\Gamma)}$$
 (2)

$$0.5 (CaO) + 0.5 H_{2(r)} + 0.25 O_{2(r)} = (Ca_{0.5}OH)$$
(3)

$$0.5 (CaO) + 0.5 H_2O_{(\Gamma)} = (Ca_{0.5}H) + 0.5 O_{2(\Gamma)}$$
(4)

$$0.5 (CaO) + 0.5 H_2O_{(\Gamma)} = (Ca_{0.5}OH)$$
 (5)

Термически равновесный состав газовой фазы рассчитывают из условий:

$$H_{2(\Gamma)} + 0.5 O_{2(\Gamma)} = H_2 O_{(\Gamma)}; \quad K_{H_2 O} = \frac{p_{H_2 O}}{p_{H_1} \cdot p_{O_1}^{1/2}}$$

$$\begin{cases}
\frac{p_{H_2O}}{p_{H_2}} = K_{H_2O} \cdot p_{O_2}^{1/2} \\
p_{\Sigma} = p_{H_2O} + p_{H_2} + p_{O_2} + p_{UH,2}
\end{cases} , \tag{6}$$

где p_{O_2} , p_{H_2} , p_{H_2O} — парциальное давление O_2 , H_2 и H_2O , соответственно, p_{Σ} — общее давление газовой смеси;

 $p_{\scriptscriptstyle \mathit{UM.2.}}$ — парциальное давление инертного газа.

Зная p_{H_2} и p_{O_2} , получим выражения для растворимости водорода в гидридной и гидратной формах:

$$(\%H)_{euopuo} = \frac{(x_{CaO} \cdot \gamma_{CaO})^{1/2} \cdot p_{H_2}^{1/2} \cdot K_2 \cdot \sum n}{\gamma_{Ca_0, sH} \cdot p_{O_2}^{1/4}}$$
(7)

$$(\%H)_{\text{zuopam}} = \frac{(x_{CaO} \cdot \gamma_{CaO})^{1/2} \cdot p_{H_2}^{1/2} \cdot p_{O_2}^{1/4} \cdot K_3 \cdot \sum n}{\gamma_{Ca_0, SOH}}$$
(8)

Соответственно, для известных $p_{H,O}$ и p_{O_2} получим:

$$(\%H)_{zu\partial pu\partial} = \frac{(x_{CaO} \cdot \gamma_{CaO})^{1/2} \cdot p_{H_2O}^{1/2} \cdot K_4 \cdot \sum n}{\gamma_{Ca_{0,5}H} \cdot p_{O_2}^{1/2}}; \tag{9}$$

$$(\%H)_{\text{eudpam}} = \frac{(x_{CaO} \cdot \gamma_{CaO})^{1/2} \cdot p_{H_2O}^{1/2} \cdot K_5 \cdot \sum n}{\gamma_{Ca_{0,5}OH}}.$$
 (10)

Тогда общая концентрация водорода в шлаке равна:

$$(\%H)_{\text{общ}} = (\%H)_{\text{гидрид}} + (\%H)_{\text{гидрат}}$$
 (11)

На рис. 2 представлены результаты расчета зависимости растворимости водорода в шлаке от парциального давления кислорода p_{o_2} и температуры. Видно, что предложенная модель растворимости водорода в шлаке удовлетворительно описывает экспериментальные данные различных авторов в широком интервале парциальных давлений кислорода.

Из рис. 2 видно также, что с понижением температуры растворимость водорода в шлаке снижается.

Рис. 2 — Зависимость растворимости водорода (*H*) в шлаке (CaO — 54 %; Al_2O_3 — 43 %; SiO_2 — 3 %) от p_{O_2} при 1500...1700 °C

Следовательно, при охлаждении металла водород может выделяться из включений в пространство между включением и металлом, и создавать растягивающие напряжения в стали, что способствует развитию коррозии.

В четвертой главе с использованием программы HSC Chemistry® 6.12 выполнена термодинамическая оценка коррозионной активности всего спектра неметаллических включений в трубной стали в водосодержащих средах, в том числе в пластовых водах различных месторождений. Подтверждено, что алюминаты кальция гидратируют в этих средах во всем диапазоне значений рабочей температуры с образованием гидроксида кальция. Сульфиды кальция проявляют коррозионную активность при повышенной температуре (рис. 3).

$$CaO \cdot Al_2O_{3(me)} + 2H_2O_{(жc)} = Ca(OH)_2 + Al_2O_3 \cdot 5H_2O_{(me)}$$
 (12)
 $\Delta G^{\circ} = -88861 + 106,3T, Дж$

$$CaS_{(me)} + 2.5H_2O_{(ж)} = 0.75Ca(OH)_{2(me)} + 0.75H_2S_{(z)} + 0.25CaSO_{4(me)} + H_{2(z)}$$
 (13)
 $\Delta G^{\circ} = 71585 - 136T$, Дж

Рис. 3 — Изменение массы исходного CaS и продуктов его взаимодействия с пластовой водой в зависимости от температуры (взаимодействие 100 г включений CaS со 100 г H_2O)

Коррозионно-активными должны быть соединения: $CaO \cdot Al_2O_3$, BaO, CaO, MgO, MnO, $BaO \cdot SiO_2$, $BaO \cdot Al_2O_3$, Al_2S_3 , CaS, FeS, MgS, $2CaO \cdot SiO_2$, $3CaO \cdot SiO_2$, $3CaO \cdot 2SiO_2$, $4CaO \cdot 3TiO_2$, $3Al_2O_3 \cdot 2SiO_2$. Не должны проявлять коррозионной

активности в пластовой воде фазы, состоящие в основном из SiO_2 , Al_2O_3 , CeO_2 , Ce_2O_3 , TiO_2 , $CaO\cdot SiO_2$, $CaO\cdot TiO_2$, $Al_2O_3\cdot SiO_2$, $Al_2O_3\cdot 2SiO_2$, CeS, Ce_2S_3 , ZnS, MnS. Результаты можно использовать для улучшения режимов раскисления стали.

Предложен механизм активации КАНВ, предполагающий взаимодействие включений с водой с последующим образованием гидратов и увеличением объема КАНВ. При этом создаются растягивающие напряжения в стали вокруг включения. Зона растягивающих напряжений подвергается интенсивной коррозии; на шлифе она идентифицируется как «темная зона» (рис. 4). Ореол КАНВ отвечает растягивающим напряжениям, исходящим от КАНВ. Поэтому ореол также подвержен повышенной коррозии. Область 3 между «темной зоной» и ореолом КАНВ, очевидно, отвечает напряжениям сжатия и поэтому подвергается коррозии гораздо меньше, чем области 2 и 4 (рис. 4).

Рис. 4 — Схема КАНВ на шлифе: 1 — КАНВ; 2 — «Тёмная зона»; 3 — Область сжатия металла; 4 — Ореол КАНВ

На основе механизма предложена модель, позволяющая рассчитывать диаметры «темной области» и ореола КАНВ при известном диаметре КАНВ после гидратации. Принято, что в составе КАНВ гидратирует только *CaO*:

$$CaO + H_2O = Ca(OH)_2 \tag{14}$$

Массы КАНВ (CaO) до гидратации $m_{_{\!H}}^{^{HB}}$ и после гидратации $m_{_{\!K}}^{^{HB}}$ связаны выражением $m_{_{\!K}}^{^{HB}}=m_{_{\!H}}^{^{HB}}\cdot\frac{74}{56}$, где 56 и 74 — молярные массы CaO и $Ca(OH)_2$, соответственно.

Тогда с учетом $\rho_{_{\!\scriptscriptstyle H}}$ — плотности CaO и $\rho_{_{\!\scriptscriptstyle K}}$ — $Ca(OH)_2$, а также радиуса КАНВ после гидратации $R_{_{\!\scriptscriptstyle K,HB}}$ найдём величину изменения объема КАНВ $\Delta V_{_{\!{\!H} \! B}}$:

$$\Delta V_{HB} = \frac{4}{3} \cdot \pi \cdot R_{\kappa, HB}^3 \cdot \left(1 - \frac{\rho_{\kappa}}{\rho_{H}} \cdot \frac{56}{74} \right)$$

Гидратация КАНВ вызывает увеличение объема металла от некоторого начального объема $V_0\,$ до $V_1\,$:

$$V_1 = \frac{4}{3} \cdot \pi \cdot r_1^3 = \frac{4}{3} \cdot \pi \cdot r_0^3 + \Delta V_{HB} \cdot \alpha ,$$

где α — степень гидратации КАНВ, определяемая долей CaO в КАНВ.

Если задать расстояние r_0 от центра КАНВ до произвольной точки в металле до гидратации включения, то можно определить, на каком расстоянии r_1 эта точка окажется после гидратации:

$$r_1 = \sqrt[3]{r_0^3 + R_{\kappa, HB}^3 \cdot \left(1 - \frac{\rho_{\kappa}}{\rho_{H}} \cdot \frac{56}{74} \cdot \alpha\right)}$$
 (15)

Используя закон Гука, выразим σ — напряжение, создаваемое КАНВ по отношению к окружающему металлу, через r_0 и r_1 и получим выражение:

$$\sigma = E_{cmanb} \cdot \left(\frac{r_1}{r_0} - 1\right) \tag{16}$$

где E – модуль Юнга (для стали E = 2,06·10⁵ МПа);

Тогда диаметр «темной зоны» и ореола КАНВ можно вычислить, используя уравнение:

$$d = D_{\kappa} \cdot \left(\frac{\alpha \cdot \left(1 - \frac{\rho_{\kappa}}{\rho_{\kappa}} \cdot \frac{M_{n}}{M_{\kappa}} \right)}{1 - \frac{1}{\left(\frac{\sigma}{E_{cm}} + 1 \right)^{3}}} \right)$$
(17)

где $M_{_{\scriptscriptstyle H}}$ и $M_{_{\scriptscriptstyle K}}$ – молярные массы КАНВ до и после гидратации;

 D_{κ} — диаметр кратера, образующегося на поверхности металла на месте КАНВ в результате его гидратации.

Расчетами установлено, что на внешней границе «темной зоны» величина напряжения металла составляет примерно $100...120~\mathrm{M\Pi a}$, что соответствует пределу текучести $\mathrm{G_{T}}$ отожженного технического железа. На границе ореола КАНВ величина напряжения равна примерно $1...2~\mathrm{M\Pi a}$, что соответствует величине касательного напряжения начала сдвиговой деформации металла. Величина α оценена по результатам анализа химического состава включений до и после взаимодействия с 0.3% водным раствором KCl и принята в расчетах равной 0.1.

На рис. 5 приведено сравнение результатов расчета диаметров «темной зоны» и ореола КАНВ по формуле (17) с фактическими размерам этих зон в зависимости от диаметра кратера.

Рис. 5 — Зависимость диаметров «темной зоны» (а) и ореола (б) от диаметра кратера. Прямые линии отвечают расчету по формуле (17). Точки получены в результате металлографического исследования

Из рис. 5 видно, что предложенная модель взаимодействий в системе «КАНВ-вода-металл» адекватна и пригодна для анализа процессов, протекающих в этой системе, и прогноза размеров «темной зоны» и ореола.

В пятой главе разработаны режимы микролегирования стали 13XФА церием, обеспечивающие значительное снижение содержания КАНВ.

С помощью термодинамической программы HSC Chemistry® 6.1 оценили степень коррозионной активности оксидов и сульфидов церия при взаимодействии с водой в интервале температур от 0 до 100 °C.

$$CeS_{(me)} + 7.5H_2O_{(ж)} = 0.5Ce(SO_4)_2 \cdot 5H_2O_{(me)} + 0.5CeO_{2(me)} + 5H_{2(z)}$$
 (18)
 $\Delta G^{\circ} = -691200 - 290\text{T}, \ Дж$

$$Ce_2S_{3(me)} + 20.5H_2O_{(ж)} = 1.5Ce(SO_4)_2 \cdot 5H_2O_{(me)} + 0.5CeO_{2(me)} + 13H_{2(e)}$$
 (19)
 $\Delta G^{\circ} = -1734000 - 740T$, Дж

$$Ce_2O_{3(me)} + H_2O_{(ж)} = 2CeO_{2(me)} + H_{2(z)}$$
 (20)
 $\Delta G^{\circ} = -83450 - 30T, Дж$

Расчет показал, что оксиды CeO_2 с водой не реагируют во всем интервале температур от 0 до 100 °C. В результате взаимодействия с водой CeS, Ce_2S_3 и Ce_2O_3 по реакциям (18)–(20) образуется гидроустойчивый CeO_2 , что останавливает дальнейшую гидратацию оксидов и сульфидов церия. Таким образом, CeO_2 , Ce_2O_3 , CeS, Ce_2S_3 являются коррозионноустойчивыми соединениями. Следовательно, можно защитить металл от вредного влияния КАНВ, создав на них защитную оболочку из вышеуказанных соединений церия.

С целью определения рациональных концентраций церия, кислорода и серы, обеспечивающих образование минимального количества включений, проведены термодинамические расчеты оксидо- и сульфидообразования церия в стали 13ХФА. В соответствии с современным уровнем технологии внепечной обработки трубной стали для расчета приняты низкие концентрации кислорода и серы (0,001% O, 0,001% S). То есть перед присадкой церия металл должен быть глубоко раскислен, очищен от серы и неметаллических включений. Оставшуюся взвесь, представляющую КАНВ, предложено модифицировать церием. Состав стали 13ХФА перед добавкой церия, выбранный для расчета, приведен в табл. 1.

Табл. 1 – Химический состав стали 13ХФА, принятый для расчетов, %

С	Si	Mn	P	S	Cr	Ni	Cu	Al	Nb	V	Ca	О _{общ}
0,103	0,27	0,6	0,008	0,001	0,61	0,07	0,1	0,03	0,034	0,061	5.10-4	0,001

На рис. 6 приведены результаты термодинамического моделирования оксидо- и сульфидообразования церия в стали 13ХФА при температуре солидус – 1495 °C. Видно, что при обработке церием предварительно раскисленной и

чистой по содержанию серы стали целесообразно иметь не более 50 ppm церия в металле. Это обеспечит образование оксидов и сульфидов церия, защищающих включения от гидратации. Дальнейшее повышение содержания церия в металле приводит к резкому росту массы сульфидов церия и последующему загрязнению металлопроводки. Отметим, что расчетное оптимальное содержание церия увеличивается с ростом концентрации кислорода и серы в металле перед добавкой РЗМ. Однако при этом усиливается риск клоггинга.

Рис. 6 – Зависимость массы оксидов и сульфидов церия в стали 13XФA (10 ppm кислорода, 10 ppm серы) при температуре 1495 °C от содержания церия. Состав стали приведен в табл. 1.

Расчеты использованы при разработке и опробовании технологии внепечной обработки трубной стали с присадкой оптимального количества церия, обеспечивающего значительное снижение содержания КАНВ.

В шестой главе приведены результаты экспериментального исследования.

Экспериментальные плавки проведены в лабораторной вакуумной печи сопротивления с графитовым нагревателем. Печь предварительно промывали аргоном. Температуру расплава измеряли вольфрам-рениевой термопарой ВР(A) 5/20. Для защиты металла от окисления плавку вели в застойной атмосфере аргона в тигле из оксида бериллия, характеризующемся высокой

термодинамической устойчивостью; добавки Al, Ca, P3M и др. производили без разгерметизации печи. Исходную шихту для плавки выбирали с низким содержанием серы — 0,002...0,003 %. Полученный слиток охлаждали в печи в токе аргона. Всего было проведено 17 лабораторных плавок.

Химический состав металла, полученного в результате лабораторных плавок (табл. 2), определяли с использованием эмиссионного спектрометра OBLF VeOS и Bruker Elemental, включая S, N и C. Содержание кислорода и азота дополнительно определяли газовым анализом на приборе TC–136 LECO.

Табл. 2 – Химический состав металла лабораторных плавок, %

№ плавки	C	Si	Mn	Al	Ca	Ce	La	Ti	S	О	N
Ц-0	0.087	0.43	0.25	0.13	0.0005	0.011	ı	0.0014	0.017		0.006
Ц-1. Пр.1	0.007	0.015	-	0.1	=	-	-	0.001	0.003	0.022	0.013
Ц-1. Пр.2	0.007	0.47	0.001	0.027	0.0003	0.003	-	0.0023	0.003	0.013	0.014
Ц-1. Пр.3	0.007	0.4	-	0.45	0.0007	0.004	-	0.003	0.004	0.0046	0.013
Ц-1. Слиток	0.007	0.35	-	0.01	0.0003	-	-	0.0023	0.004		0.012
Ц-2. Пр.1	0.005	0.12	1	0.14	0.007	0.005	ı	0.0027	0.005	0.03	0.013
Ц-2. Пр.2	0.005	0.29	ı	0.09	0.0006	0.001	ı	0.0013	0.005	0.0074	0.013
Ц-2. Пр.3	0.005									0.0072	0.014
Ц-2. Слиток	0.005	0.25	-	0.2	0.0011	-	0.071	0.0013	0.003		0.011
Ц-3. Пр.1	0.008	0.041	ı	0.1	ı	0.002	ı	-	0.012	0.032	0.012
Ц-3. Пр.2	0.008	0.23	0.002	0.07	0.0002	0.002	ı	0.0009	0.008	0.03	0.014
Ц-3 . Пр.3	0.008	0.23	0.002	0.09	0.003	0.13	0.002	0.002	0.007	0.0086	0.019
Ц-3. Слиток	0.008	0.19	0.001	0.06	0.0004	0.088	i	0.0008	0.008		0.018
Ц-4. Пр.1	0.014	0.003	0.001	0.1	-	0.002	ı	0.0006	0.014	0.03	0.014
Ц-4. Пр.2	0.014	0.26	-	0.16	0.0007	0.001	-	0.0017	0.016	0.034	0.014
Ц-4. Пр.3	0.014	0.24	0.002	0.066	0.0006	0.002	0.18	0.002	0.014	0.014	0.017
Ц-4. Слиток	0.014	0.21	0.001	0.055	0.0003	-	0.14	0.0018	0.011		0.016
Ц-5	0.07	0.49	0.33	0.1	0.0006	0.008	-	-	0.003		0.015
Ц-6	0.054	1.09	0.33	0.14	0.0008	-	-	-	0.003		0.012
Ц-7	0.051	0.84	0.33	0.12	0.0010	-	-	-	0.003		0.015
Ц-8	0.037	0.69	0.33	0.048	0.0005	0.014	i	-	0.003		0.020
Ц-9	0.035	0.61	0.33	0.02	0.0005	0.004	ı	-	0.003		0.016
Ц-10	0.042	0.42	0.33	-	0.0004	0.016	ı	-	0.003		0.015
Ц-11	0.045	0.42	0.33	-	-	0.011	-	-	0.003		0.007
Ц-12	0.041	0.78	0.33	0.046	0.0005	0.001	-	-	0.003		0.018
Ц-13	0.045	0.43	0.33	0.029	0.0003	0.005	-	-	0.003		0.014
Ц-14	0.045	0.43	0.33	0.045	=	0.007	=	0.018	0.003		0.016
Ц-15	0.035	0.43	0.33	0.019	-	-	-	-	0.003		0.017
Ц-16	0.025	0.43	0.33	-	-	-	-	-	0.003		0.015

Металлографическое исследование проводили с использованием оптических микроскопов Axiovert 200 MAT и NIKON Eclipse LV100. Определены плотность КАНВ, а также размеры «темной зоны» вокруг КАНВ и его ореола (табл. 3). Спектральный анализ состава КАНВ проводили с использованием сканирующего микроскопа SEM Quanta 650 (табл. 4).

Травление шлифов образцов металла различной схемы раскисления и модифицирования производили в водосодержащих растворах: деионизированная вода (чистота — 99,99999 %), 0,3% водный раствор *KCl*, 0,9% водный раствор *NaCl*. Показано, что КАНВ активируются при использовании любого из вышеперечисленных растворов, разница заключается лишь в интенсивности травления.

Табл. 3 – Плотность КАНВ, размеры «темной зоны» и ореола КАНВ

№ плавки		ость КАНЕ	3, шт/мм ²	BOI	етр «темно круг КАНВ		Диаметр ореола КАНВ, мкм		
	min	max	среднее	min	max	среднее	min	max	среднее
Ц-0	1	3		4.6	112	7.4	10.5	268	32.8
Ц-1 . Пр.1	1	2	1		52.9	29.4		417.5	299.4
Ц-1. Пр.2	1	34	1	5.3	16	15.5	34.3	122.8	70.4
Ц-1. Пр.3		9	5		15.8	14.5		410.8	178
Ц-1 . Слиток	0	9	3		15			140	
Ц-2. Пр.1	0	3	1	4	25		42	497	
Ц-2. Пр.2	1	15	5	4.3	40	15.5	41.5	687	177
Ц-2. Пр.3	3	14	8	7.1	112	13	33.5	713	256
Ц-2 . Слиток	1	30	6			24			102.7
Ц-3. Пр.1	0	1	0			15			246.5
Ц-3. Пр.2	0	12	7	3.4	31.6	21.8	39.7	408	241
Ц-3. Пр.3	0	3	1	9.9	34.5		82.3	403	
Ц-3 . Слиток	01	9	1		30.1	19		475	50
Ц-4. Пр.1	0	2	1	11	22.3	13.1	130	261.5	140
Ц-4. Пр.2	12	9	4	14.5	59	24.5	74	611	159.5
Ц-4. Пр.3	12	9	6	3.1	15.8	13	37	417	232
Ц-4 . Слиток	0	15	3	8.5	52.4	23.2	21.3	340	152.5
Ц-5	1	3		15.5	107.6	60	112.5	1006.6	500
Ц-6	4	10		5.6	36.7	25	24.8	275	150
Ц-7	11	32		4.67	38.6	20.5	16.6	464.6	92
Ц-8				2.3	15.4	14.7	11.6	65	57.4
Ц-9			14	9	49	39	20	302.5	114.5
Ц-12		32	20	1,9	13,7	10	11,6	102,8	53,6

Рис. 7 – Зависимость содержания КАНВ (шт/мм²) на площади шлифа от концентрации церия в стали, построенная по данным табл. 2 и 3

Из рис. 7 видно, что, начиная с концентрации церия 50 ppm, содержание КАНВ остается на требуемом уровне (не более 2 шт/мм²), что отвечает вышеуказанным рекомендациям по микролегированию стали церием, обеспечивающим значительное снижение содержания КАНВ.

С целью уточнения механизма взаимодействия в системе «КАНВ—травитель—металл» произведена видеосъёмка травления шлифов лабораторных плавок различными водными растворами на NIKON Eclipse LV100. На рис. 8 приведена кинограмма взаимодействия алюминатов кальция с 0,3% водным раствором *КСl*. Кадры 1–12 сняты с интервалом 30 сек. Начало съемки – через 20 сек после нанесения капли раствора на поверхность шлифа.

Полученная кинограмма (рис. 8) подтверждает известную ранее общую картину появления и развития очага взаимодействия КАНВ с металлом при наличии водосодержащей среды.

По той же методике были проведены эксперименты с образцами всех плавок. Результаты экспериментов подтверждают теоретические представления о коррозионной устойчивости оксидов и сульфидов церия, то есть гидратации включений Ce_2O_3 , CeO_2 , CeS, Ce_2S_3 не было обнаружено (рис. 9). Также было показано, что при раскислении металла кремнием и марганцем образования КАНВ не наблюдается (рис. 10).

Рис. 8 — Кинограмма взаимодействия включений алюминатов кальция с 0,3% водным раствором KCl. В нижнем левом углу указано время съемки в формате мин:сек

Рис. 9 — Травление шлифа в 0,9 % водном растворе *NaCl*. Плавка Ц-10: металл раскислен марганцем, кремнием, церием. Время травления — 20 мин

Рис. 10 – Травление шлифа в 0,9 % водном растворе *NaCl*. Плавка Ц-16: металл раскислен марганцем, кремнием. Время травления – 20 мин

Изучены особенности морфологии неметаллических включений добавки зависимости схемы раскислителей. Так, случае В OT последовательной добавки Al, Ca, Ce оболочка из Ce_2O_3 на включении получается сплошной (рис. 11-а). В случае совместной отдачи материалов образующиеся включения не имеют сплошной защитной оболочки из Ce_2O_3 (рис. 11-б).

Рис. 11 — Модифицирование алюминатов кальция оксидами церия Ce_2O_3 при последовательной (а) и одновременной (б) добавке Al, Ca и Ce. Детектирование в режиме обратно-отраженных электронов

Из приведенных результатов следует, что церий нужно присаживать в металл не вместе с Al и Ca, как делается в настоящее время, а последовательно – алюминий, кальций, затем церий. В этом случае, как видно из рис. 11 и

табл. 4, формируется более явно выраженная защитная оболочка из оксидов церия на КАНВ.

Табл. 4 – Химический состав неметаллических включений (рис. 11), %

	0	Al	S	Ca	Ce	Fe					
	Рис. 11-а										
1	40,16	39,91	2,37	12,49	5,07	17,27					
2	39,79	0,83	0,60	0,68	49,06	9,04					
	Рис. 11-б										
1	28,41	23,64	10,86	1,12	18,70	17,27					
2	4,15	2,54	18,26	12,99	5,31	56,75					
3	19,84	12,83	25,61	13,01	14,60	14,12					
4	37,14	29,40	7,52	4,25	12,31	9,38					

Рекомендации по модифицированию стали церием успешно опробованы на опытных плавках стали 13ХФА, проведенных на ОАО «Уральская Сталь». В конце обработки металла на установке «ковш-печь» была произведена отдача проволоки с наполнителем СК25РЗМ15 (состав проволоки приведен в табл. 5) в количестве 100-110 кг наполнителя на 134 т стали, что соответствует расчетной концентрации церия в металле 50 ppm.

Табл. 5 – Химический состав РЗМ-содержащей проволоки СК25РЗМ15, %:

Ca	Si	Al	La	Ce	Mg	Fe
24,7	31,2	1,9	1,6	11,9	1,5	27,2

В результате обработки стали 13ХФА проволокой с наполнителем СК25РЗМ15 в количестве 100-110 кг загрязненность проката алюминатами кальция (КАНВ 1 типа) на опытных плавках снизилась в среднем с 2,2 до 1,4 шт/мм². Загрязненность сульфидами кальция (КАНВ 2 типа) снизилась с 5,1 до 0,6 шт/мм², то есть более, чем в пять раз.

Выводы

- 1. Определен перечень неметаллических включений, которые могут обладать коррозионной активностью при взаимодействии с водной средой. Коррозионно-активными должны быть соединения: $CaO \cdot Al_2O_3$, BaO, CaO, MgO, MnO, $BaO \cdot SiO_2$, $BaO \cdot Al_2O_3$, Al_2S_3 , CaS, FeS, MgS, $2CaO \cdot SiO_2$, $3CaO \cdot SiO_2$, $3CaO \cdot SiO_2$, $3CaO \cdot 2SiO_2$, $4CaO \cdot 3TiO_2$, $3Al_2O_3 \cdot 2SiO_2$. Не должны проявлять коррозионной активности в пластовой воде фазы, состоящие в основном из SiO_2 , Al_2O_3 , CeO_2 , Ce_2O_3 , TiO_2 , $CaO \cdot SiO_2$, $CaO \cdot TiO_2$, $Al_2O_3 \cdot SiO_2$, $Al_2O_3 \cdot 2SiO_2$, CeS, Ce_2S_3 , CeS_3 , CeS_3 , CeS_4 , CeS_5 , CeS
- 2. На основе содержательного анализа массива равновесных данных раскисления железа алюминием при 1600 °C предложено уточненное значение константы равновесия $K = a_{Al}^2 \cdot a_O^3$ этой реакции, составляющее $1,78 \cdot 10^{-14}$ и параметр e_O^{Al} , равный -0,25.
- 3. Установлена количественная зависимость растворимости водорода в оксидных системах от парциального давления кислорода. Предложена методика расчета растворимости водорода в шлаках и оксидных неметаллических включениях, учитывающая состав взаимодействующих фаз, раскисленность и температуру системы.
- 4. Предложен механизм формирования очага взаимодействия КАНВ с металлом в водной среде, заключающийся в увеличении объема КАНВ в результате гидратации и образовании зон растяжения и сжатия вокруг КАНВ. Разработана модель распределения механических напряжений вокруг гидратирующих включений.
- 5. Установлено что присадки церия способствуют образованию защитной оболочки из оксидов церия на КАНВ, что снижает содержание КАНВ и уменьшает их вредное влияние. Разработана расчетная методика, позволяющая определять оптимальную концентрацию церия в зависимости от содержания кислорода и серы в металле.
- 6. Разработана и опробована технология внепечной обработки трубной стали с присадкой рационального количества церия, обеспечивающая значительное снижение содержания КАНВ. Загрязненность проката

алюминатами кальция (КАНВ 1 типа) на опытных плавках снизилась в среднем с 2,2 до 1,4 шт/мм². Загрязненность сульфидами кальция (КАНВ 2 типа) снизилась с 5,1 до 0,6 шт/мм², то есть более, чем в пять раз.

Публикации по теме диссертации в изданиях, рекомендованных ВАК:

- 1. Котельников Г.И., Мовенко Д.А., Косырев К.Л. и др. Расчетная оценка коррозионной активности неметаллических включений в трубной стали // Электрометаллургия.— 2011.— № 2.— С. 36-39.
- 2. Мовенко Д.А., Котельников Г.И., Семин А.Е. и др. Совершенствование режимов обработки трубной стали церием // Электрометаллургия. 2012. № 8.— С. 7-12.
- 3. Котельников Г.И., Мовенко Д.А., Косырев К.Л. и др. Термодинамическая модель распределения водорода в системе «шлак-газовая фаза» в условиях неоднородности химического потенциала кислорода // Электрометаллургия.— 2013.- N = 6.- C. 8-20.

Другие публикации:

- 4. Котельников Г.И., Мовенко Д.А., Семин А.Е. и др. Термодинамическая модель распределения азота в системе «шлак-газовая фаза» в условиях неоднородности химического потенциала кислорода // Электрометаллургия.— 2013.- N 25.- C. 29-40.
- 5. Котельников Г.И.. Методика расчета распределения азота и водорода в системе «металл-шлак-газовая фаза» в условиях неоднородности химического потенциала кислорода / Котельников Г.И., Кузнецов М.С., Семин А.Е., Косырев К.Л., Мовенко Д.А., Павлов А.В. // Электрометаллургия. 2012. № 6. С. 26-30.
- 6. Котельников Г.И. Содержание азота и водорода в металле при различных сталеплавильных процессах в условиях неоднородности химического потенциала кислорода / Котельников Г.И., Кузнецов М.С., Семин

- А.Е., Косырев К.Л., Мовенко Д.А., Павлов А.В. // Электрометаллургия. 2012. № 10. С. 43-47.
- 7. Лопаев М.С., Мовенко Д.А., Котельников Г.И. и др. Возможные инновационные решения в технологии производства стали с низким содержанием водорода // Взаимодействие изотопов водорода с конструкционными материалами: Материалы VII Международной школыконференции молодых ученых и специалистов.— М.: НИЯУ МИФИ, 2011. С. 356-357.
- 8. Мовенко Д.А. Расчет термодинамической устойчивости оксидных и сульфидных включений трубной стали в пластовых водах // Сб. науч. тр. 66–х Дней науки студентов МИСиС: международных, межвузовских и институтских научно-технических конференций.— М.: МИСиС, 2011. С. 112.
- 9. Термодинамика и кинетика металлургических процессов: физико-химические расчеты по термодинамике и кинетике поведения газов и неметаллических включений в стали: практикум / Котельников Г.И., Павлов А.В., Косырев К.Л., Семин А.Е., Красильников А.В., Мовенко Д.А. М.: Изд. Дом МИСиС, 2013. 45 с.
- 10. Теория и технология металлургии стали: технологические расчеты на базе равновесного распределения компонентов в системе металл-шлак-газ с использованием компьютерной программы «ГИББС МИСиС»: учеб. пособие / Котельников Г.И., Семин А.Е., Толстолуцкий А.А., Косырев К.Л., Стомахин А.Я., Мовенко Д.А. М.: Изд. Дом МИСиС, 2011. 54 с.
- 11. Термодинамика и кинетика металлургических процессов: физико-химические расчеты распределения компонентов между металлом, шлаком и газом с использованием компьютерной программы «ГИББС МИСиС»: учеб. пособие / Котельников Г.И., Павлов А.В., Толстолуцкий А.А., Косырев К.Л., Стомахин А.Я., Мовенко Д.А. М.: Изд. Дом МИСиС, 2011. 49 с.