Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр «Институт общей физики им. А.М. Прохорова Российской академии наук» (ИОФ РАН)

Ермакова Юлия Александровна

СИНТЕЗ И СВОЙСТВА ЭФФЕКТИВНЫХ АП-КОНВЕРСИОННЫХ ЛЮМИНОФОРОВ НА ОСНОВЕ ФТОРИДА СТРОНЦИЯ, ЛЕГИРОВАННОГО ИТТЕРБИЕМ, ЭРБИЕМ И ТУЛИЕМ

2.2.3 – Технология и оборудование для производства материалов и приборов электронной техники

Автореферат диссертации на соискание ученой степени кандидата технических наук

Научный руководитель: к.х.н. Кузнецов Сергей Викторович

Москва – 2023

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ Актуальность исследования

Ап-конверсионные люминофоры являются перспективными материалами фотоники и применяются для визуализации инфракрасного излучения [1], биовизуализации [2], маркировки и защиты от подделок [3], термометрии и вакуумметрии [4], увеличения КПД солнечных панелей [5] и 2D/3D мониторов [6]. Ап-конверсионные люминофоры – это материалы, которые преобразуют энергию из ближней инфракрасной (БИК) области спектра в видимый диапазон с помощью нелинейного оптического процесса. Принципы работы таких люминофоров были описаны в 60-е годы XX века Озелем [7], Овсянкиным и Феофиловым [8]. В качестве сенсибилизатора ап-конверсии чаще всего используют ион Yb³⁺, поскольку он имеет очень простую схему энергетических уровней [9]. Ионы Er³⁺, Tm³⁺ и Но³⁺ наиболее часто используют в качестве ап-конверсионных люминесцентных ионов [10]. Наиболее широко исследованной матрицей является низкотемпературная модификация β-NaYF₄ [11], которая была открыта в 70 – е годы XX века, в то время как другие матрицы являются гораздо менее исследованными. Наиболее эффективными являются апконверсионные люминофоры с квантовыми выходами 10.5 % для β-NaYF₄:Yb(21.4 %):Er(2.2 %) при плотности мощности накачки 35 Вт/см² [12], 5 % для BaY₂ZnO₅:Yb(7 %):Er(3 %) при плотности мощности накачки 2.2 Вт/см² [13], 5.8 % для нанопорошка La₂O₂S:Yb(9 %):Er(1 %) при плотности мощности накачки 13 Вт/см² [14], 6.5 % для монокристалла SrF₂:Yb(3 %):Er(2 %) при плотности мощности накачки 230 Вт/см² [15] и 10 % для монокристалла BaF₂:Yb(3 %):Er (2 %) при плотности мощности накачки 490 Вт/см² [16].

Проведение сравнительного анализа представленных в литературе эффективностей люминофоров крайне затруднительно по целому ряду причин, т.к. люминофоры были синтезированы как в виде нано- и микропорошков, так и монокристаллов, и оценка величин квантового выхода люминесценции проводилась разными способами. Помимо этого, квантовый выход ап-конверсионной люминесценции имеет нелинейную зависимость от плотности мощности возбуждения, что также осложняет сравнение.

Синтез порошков наиболее эффективного люминофора β-NaYF₄ [17] является достаточно сложным матоннажным процессом. Порошки β-NaYF₄ не позволяют синтезировать температурно-устойчивые люминофоры ввиду своей невысокой температуры плавления и фазового превращения. В связи с чем актуальной проблемой является поиск температурно-стабильных люминофоров, демонстрирующих высокие величины эффективности ап-конверсионной люминесценции. Среди фторидов, обладающих низкой энергией фононов, наиболее подходящими матрицами являются фториды кальция, стронция и бария, которые образуют широкие области гомогенности твердых растворов с редкоземельными элементами. Среди них наибольшую температуру плавления имеет фторид стронция – 1464 °C.

Целью диссертационной работы являлось исследование синтеза и люминесцентных характеристик порошков люминофоров на основе фторида стронция, легированного Yb³⁺/Er³⁺, Yb³⁺/Tm³⁺ и Yb³⁺/Er³⁺, Tm³⁺.

Для достижения поставленной цели решались следующие задачи:

1. Разработка методик синтеза порошков на основе фторида стронция, легированного РЗЭ с использованием различных фторирующих агентов.

2. Определение составов с высокими величинами энергетического выхода при легировании фторида стронция ионами Yb³⁺/Er³⁺ и Yb³⁺/Tm³⁺.

3. Определение составов, соответствующих белой люминесценции, при легировании фторида стронция ионами Yb³⁺, Er³⁺ и Tm³⁺.

4. Разработка алгоритма по вариации координат цветности.

Научная новизна

1. Установлена взаимосвязь «состав – люминесцентные характеристики» синтезированных порошков на основе фторида стронция и определены составы, демонстрирующие наибольшие величины энергетического выхода ап-конверсионной люминесценции.

2. Открыт новый самофторирующийся прекурсор Sr_{1-x-z}R_x(NH₄)_zF_{2+x-z} для получения оптической керамики, который реализуется при использовании фторида аммония в качестве фтор-агента.

Практическая значимость

1. Разработана методика синтеза высокоэффективных порошков алконверсионных люминофоров $Sr_{0.935}Yb_{0.050}Er_{0.015}F_{2.065}$ (энергетический выход 6.73 %) и $Sr_{0.949}Yb_{0.050}Tm_{0.001}F_{2.051}$ (энергетический выход 1.59 %) при плотности мощности накачки 1 Вт/см².

2. Разработан и верифицирован алгоритм расчета составов механических смесей ап-конверсионных люминофоров для достижения заданных координат цветности.

3. Методом горячего прессования (T = 1000 °C, P = 250 МПа, вакуум 10^{-2} Торр) была изготовлена оптическая керамика ($Sr_{0.82}Yb_{0.15}Er_{0.03}F_{2.18}$) с коэффициентом пропускания более 80 % в спектральном диапазоне 0.42–7.00 мкм.

Объекты и методы исследования

Объектами исследования являлись порошки фторида стронция, легированные РЗЭ (Yb³⁺, Er³⁺ и Tm³⁺), синтезированные методом соосаждения из водных растворов. Образцы были исследованы методами рентгенофазового анализа (Bruker D8 Advance), сканирующей электронной

микроскопии (Carl Zeiss NVision 40), энергодисперсионным микроанализом (Oxford Instruments X-MAX), дифференциально-термическим анализом (MOM Q-1500 D) и дифференциально-сканирующей калориметрией (NETZSCH DSC 404 F1 Pegasus). Изучение люминесцентных характеристик ап-конверсионной люминесценции эрбия туллия реализовано И посредством регистрации спектров ап-конверсионной люминесценции в видимом диапазоне спектра с помощью установки для лазерноспектроскопии, индуцированной люминесцентной включающей волоконно-оптический спектроанализатор ЛЭСА-01-Биоспек и лазера возбуждения с длиной волны 974 нм. Оценка величин энергетического выхода проведена с использованием интегрирующей сферы и учетом аппаратурной функции спектрофотометра Hitachi. Ошибка определения величины энергетического выхода составляла 0.02 %. При оценке величины квантового выхода (QY) в качестве источника возбуждения использовали лазерный диод с длиной волны 980 нм (Roithner), а также интегрирующую сферу (Labsphere), спектрометр (C200, Thorlabs) и оптическое волокно (FP1000URT, Thorlabs). Спектры пропускания в диапазоне 300-3300 нм и 1250-25000 нм были зарегистрированы на спектрофотометрах CARY 5000 (Varian) и ИНФРАЛЮМ ФТ-08 (ЛЮМЭКС), соответственно. Для синтезированных образцов был проведен химический анализ на содержание НF (титриметрический метод) и NH₄F (отгонка аммиака по методу Кьельдаля).

Положения, выносимые на защиту

1. Разработана методика синтеза порошков эффективных алконверсионных люминофоров на основе SrF_2 :Yb:R (R = Er, Tm, Er:Tm) методом соосаждения из водных растворов при покапельном добавлении растворов нитратов в раствор фторида аммония с последующим контролем отмывки от нитрат-ионов и термообработки при 600 °C в течение 1 часа.

2. Доказано образование нового твердого раствора $Sr_{I-x-z}R_x(NH_4)_zF_{2+x-z}$ с ионом NH_4^+ при легировании фторида стронция ионами редкоземельных элементов, который при термообработке до 600 °C испытывает изоструктурный распад с выделением HF и NH₃.

3. Определены составы люминофоров с наибольшими выходными характеристиками ап-конверсионной люминесценции: энергетический выход 6.73 % при P = 1 BT/cm² (SrF₂:5%Yb³⁺:1.5%Er³⁺), 1.59 % при P = 1 BT/cm² (SrF₂:5%Yb³⁺:0.10%Tm³⁺) и квантовый выход 2.80 % при P = 10 BT/cm² (SrF₂:2%Yb³⁺:2%Er³⁺).

4. Разработан алгоритм достижения заданных координат цветности ап-конверсионной люминесценции на основе механических смесей люминофоров и достигнута люминесценция белого света с энергетическим выходом 3.50 % (54 вес.% - SrF2:5%Yb³⁺:0.10%Tm³⁺ и 46 вес.% - SrF2:5%Yb³⁺:1.5%Er³⁺).

5. Синтезирована оптическая керамика $(Sr_{0.82}Yb_{0.15}Er_{0.03}F_{2.18})$ с коэффициентом пропускания более 80 % в спектральном диапазоне 0.42–7.00 мкм.

Личный вклад автора

В диссертации изложены результаты работы, выполненной автором в течение 12 лет. Личный вклад в диссертационную работу заключается в обзоре научной литературы, постановке задач исследований, проведении экспериментов по синтезу порошков, проведении химического анализа по методу Кьельдаля и определении содержания HF, обработке данных физико-химического анализа образцов: РФА, СЭМ, РСМА, ДТГА и спектрально-люминесцентной характеризации, обсуждении результатов и формулировании основных выводов.

Достоверность результатов

Достоверность и обоснованность результатов исслелования обусловлена применением современных методов исследования И оборудования, которое верифицируется в соответствии с международными стандартами обеспечения единства измерений и единообразием средств измерений, хорошим согласием между экспериментальными теоретическими данными, представленными в литературных источниках.

Апробация результатов

Основные результаты работы докладывались и обсуждались на: IX и XI Всероссийских конференциях «Химия Фтора», Москва (Россия), 2012, 2016 г.г.; 13-ой, 14-ой и 15-ой Международных научных конференцияхшколах «Материалы нано-, микро-, оптоэлектроники и волоконной оптики: физические свойства и применения», Саранск (Россия), 2014, 2015 и 2016 гг.; Конференциях молодых ученых НЦЛМТ ИОФ РАН, г. Москва (Россия), 2013, 2014 и 2015 г.г.; Международном симпозиуме по неорганическим фторидам: «Химия и технология» (ISIF-2014), г. Томск (Россия), 2014 г.; XX International Conference on Chemical Thermodynamics in Russia (RCCT-2015), г. Нижний Новгород (Россия), 2015 г.; II и IV Байкальском Материаловедческом форуме, г. Улан-Удэ - оз. Байкал (Россия), 2015, 2022 гг.; Advanced Microscopy Meeting, г. Москва (Россия), 2015г.; Saratov Fall Meeting. Symposium: Optics & Biophotonics, г. Саратов (Россия), 2015 г.; 1st Conference and Spring School on Properties, Design and Applications of Upconverting Nanomaterials, г. Вроцлав (Польша), 2016 г.; The 18th International Conference on Crystal Growth and Epitaxy ICCG-18, г. Нагоя (Япония), 2016 г.; 1st International conference for young scientist: Biophysics, Biophotonics, Biotechnology, г. Москва (Россия), 2016 г.; XXII и XXIII Международных конференциях «Оптика И спектроскопия конденсированных сред», г. Краснодар (Россия), 2016 и 2017 г.г.; Седьмая международная конференция стран СНГ «Золь-гель синтез и исследование неорганических соединений, гибридных функциональных материалов и дисперсных систем «Золь-гель 2023», Москва (Россия), 2023 г.

Публикации

По результатам исследований опубликовано 6 научных работ в рекомендованный ВАК журналах, 5 из которых входят в международные базы данных Web of Science и Scopus.

Объем и структура диссертации

Диссертация состоит из введения, списка сокращений и условных обозначений, четырех глав, заключения, списка литературы и приложений. Общий объем диссертации – 125 страницы, включая 63 рисунка, 14 таблиц и список литературы, содержащий 137 наименования.

Благодарности

Автор выражает глубокую благодарность научному руководителю к.х.н. С.В. Кузнецову за помощь в организации и проведении исследований, полезные консультации по результатам исследований, а также конструктивную критику. Выражаю признательную благодарность проф., д.х.н. П.П. Федорову за участие в обсуждении работы и результатов; к.х.н. А.А. Лугининой за всестороннюю помощь и поддержку в проведении экспериментов, в том числе проведение химического анализа; к.ф.-м.н. В.В. Воронову и к.ф.-м.н. Р.П. Ермакову за регистрацию рентгенограмм; к.ф.м.н. А.В. Рябовой и к.ф.-м.н. Д.В. Поминовой за регистрацию спектров люминесценции. расчет величин энергетического выхода апконверсионной люминесценции; чл-кор. РАН, д.х.н. В.К. Иванову за обсуждение результатов и ценные замечания, к.х.н. А.Е. Баранчикову и к.х.н. А.Д. Япрынцеву (ИОНХ РАН) за проведение сканирующей электронной микроскопии и энергодисперсионного микроанализа; м.н.с. Е.В. Черновой за помощь в оформлении рисунков, Е.И. Мадирову (Карлсруйский технологический Институт (Германия) за регистрацию спектров ап-конверсионной люминесценции и оценку величин квантового выхода ап-конверсионной люминесценции и Е.А. Гарибину (ЗАО «ИНКРОМ») за апробацию синтезированных порошков в качестве шихты для производства оптической керамики.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во **введении** дана общая характеристика работы, продемонстрирована актуальность выбранной темы, сформулированы цель и задачи исследования, изложены основные положения, выносимые на защиту. Глава 1 посвящена литературному обзору, в котором рассмотрены физико-химические свойства фторида стронция и фторидов редкоземельных элементов (РЗЭ), фазовые диаграммы систем SrF₂ – RF₃ (R = РЗЭ). Рассмотрены различные методы синтеза порошков на основе фторида стронция, легированного ионами РЗЭ. На основе проведённого анализа преимуществ и недостатков каждого из методов был выбран метод соосаждения из водных растворов для синтеза нанопорошков. Рассмотрены основные механизмы ап-конверсионной люминесценции в материалах, легированных ионами РЗЭ.

Глава 2 включает в себя описание методов исследования, исходных реактивов и методики синтеза порошков фторида стронция, легированного ионами РЗЭ.

Синтез порошков фторидов осуществляли методом соосаждения из водных растворов. Методика синтеза: готовили растворы нитрата стронция (0.08 M) и нитратов РЗЭ (0.08 M), которые затем перемешивались в течение 10-15 минут с помощью магнитной мешалки. Затем проводили покапельное добавление растворов в полипропиленовый реактор различными методами. Прямой порядок – покапельное добавление раствора нитратов к раствору фторирующего агента с использованием водяной бани при температуре 60-65 °С и без водяной бани. Обратный порядок покапельное добавление раствора фторирующего агента к раствору нитратов. Совместное осаждение одновременное покапельное добавление растворов нитратов и фторирующего агента в воду. В качестве фторирующих агентов использовали раствор фторида аммония (0.16 М при избытке 7 или 114% от стехиометрии), фтороводородной кислоты (48 % при 6 и 12 кратном избытке от стехиометрии), фторида натрия (0.16 М при избытке 7 % от стехиометрии) и двухводного фторида калия (0.16 М при избытке 7 %). По завершении покапельного добавления полученную суспензию перемешивали в течение 2 часов. После отстаивания осадка маточный раствор декантировали, осадок промывали либо разбавленным раствором фторида аммония или фтороводородной кислоты, либо водой с контролем чистоты отмывки от нитрат-ионов качественной реакцией с дифениламином.

При использовании в качестве фторирующих агентов NaF и KF осадки плохо оседали при промывке, поэтому отмывку от нитрат-ионов проводили в диализных мешках (Orange Scientific, размер пор 6-8 кДа, диаметр 50 мм).

Полученные осадки либо сразу сушили при температуре 45 °C, либо в случае плохого осаждения сначала центрифугировали в течение 5 минут при скорости вращения 10000 об/мин и далее сушили при температуре 45 °C. Высокотемпературную сушку осадка проводили в

платиновом тигле при температуре 600 °C в течение 1 часа при скорости нагрева 10°/мин.

Глава 3 посвящена исследованию синтеза порошков твердых растворов $SrF_2:R^{3+}$ ($R^{3+} = Yb$, Er, Tm) и их физико-химической характеризации.

<u>В параграфе 3.1</u> представлены результаты синтеза образцов твердых растворов состава $Sr_{1,x,y}Yb_xEr_yF_{2+x+y}$ методом осаждения из водных нитратных растворов (прямой способ смешения) при больших и малых концентрациях фтор-агента, а также при разных его типах (HF, NH₄F, NaF и KF) в широком диапазоне концентраций РЗЭ (2.5–30.0 мол.%).

Было установлено, что дисперсность и морфология порошка зависят от природы фторирующего агента (HF, NH₄F, NaF и KF).

При использовании в качестве фтор-агента HF (12 кр. изб.) рентгенодифракционные пики образца F815, высушенного на воздухе при 45 °С имеют выраженное уширение у своего подножия, что хорошо различимо на вставке рис. 1*a*. Данное уширение согласно рентгенографическим расчетам обусловлено фазой малых кристаллитов (синяя расчетная рентгенограмма на вкладке рис.1a), которые, судя по совпадению положений и интенсивностей пиков, структурно идентичны фазе крупных кристаллитов (бирюзовая расчетная рентгенограмма на вкладке рис.1а). Параметр решетки фазы крупных кристаллитов равен 5.808(1) Å, а фазы мелких кристаллитов 5.774(1) Å, что различимо из смещения пиков на рис.1а. Согласно расчетам, массовая доля фазы малых частиц составляет около 39 %.

Рис. 1. (а) – рентгенограмма и (б) – изображение СЭМ образца Sr_{0.955}Yb_{0.020}Er_{0.025}F_{2.045} (опыт F815), синтезированного с HF (12 кр. изб.) и высушенного на воздухе при 45 °C.

Характерной особенностью микроструктуры полученного порошка является выраженная неоднородность гранулометрического состава. Из данных СЭМ (рис. 1δ) видно, что на фоне крупных ограненных кристаллитов размером до 500 нм различимы мелкие кристаллиты размером около 10 нм, что подтверждается результатами РФА (рис. 1a). После высокотемпературной обработки при 600 °C сохраняется состояние морфологической разделенности на большие и малые кристаллиты.

При использовании фторида аммония (7 % и 114 %) в качестве фтор-агента на рентгенограммах (рис. 2a и 26) видно, что в обоих случаях образцы являются однофазными со структурой флюорита. Дифракционные пики симметрично уширены, что обусловлено преимущественно малостью размеров *D*. Увеличение избытка фтор-агента приводит к незначительному уменьшению параметра решетки и размера *D* с 20 до 15 нм. При сравнении данных СЭМ (рис. 26 и 2e) видно, что при избытке фтор-агента 7 % наблюдается более широкий диапазон размеров частиц (15÷55 нм), а при избытке 114 % – более узкий (15÷35), соответственно.

Рис. 2. (а, в) – рентгенограммы и (б, г) – изображения СЭМ образцов состава Sr0.955Yb0.020Er0.025F2.045, полученных при различных концентрациях избытка NH4F.

При синтезе с NaF (рис. 3a) и KF (рис. 3δ) в качестве фтор-агентов, частицы получаются более крупными, в диапазоне 140÷600 нм и 125÷450 нм, соответственно.

Было выявлено, что дисперсность и морфология полученного порошка зависят от концентрации РЗЭ ($x+y = 2.5 \div 30.0$) – с увеличением содержания РЗЭ в твердом растворе размер частиц значительно уменьшается и от температуры термообработки – при увеличении температуры термообработки от 45 до 600 °C размеры наночастиц возрастают от 10–20 до 100 нм.

Было обнаружено образование нового флюоритового твердого раствора Sr_{1-x-z}R_x(NH₄)_zF_{2+x-z} при легировании фторида стронция ионами

Рис. 3. Изображения СЭМ образцов с номинальным составом Sr0.96Yb0.02Er0.02F2.04: а – синтез с NaF; б – синтез с KF.

редкоземельных элементов при использовании избытка фторида аммония 114 % и установлены концентрационные границы его существования: *z* = 0.013÷0.070 мол.д. Определена система уравнений, описывающих

изменение параметра решетки твердого раствора $\mathrm{Sr}_{I-x-z} \mathrm{R}_x(\mathrm{NH}_4)_z \mathrm{F}_{2+x-z}$ от концентрации РЗЭ и NH_4^+ : $\begin{cases} a = 5.800 - 0.269 \cdot x - 0.010 \cdot z \\ z = f(x) \approx 0.204 \cdot x + 1.451. \end{cases}$ Выявлено, что твердый раствор $\mathrm{Sr}_{I-x-z} \mathrm{R}_x(\mathrm{NH}_4)_z \mathrm{F}_{2+x-z}$ имеет

Выявлено, что твердый раствор $Sr_{I-x-z}R_x(NH_4)_zF_{2+x-z}$ имеет существенное значение для технологии получения нанофторидов, т.к. позволяет предотвратить процесс пирогидролиза наночастиц в процессе термообработки за счет выделяющегося при изоструктурном распаде HF.

При исследовании взаимосвязи «состав–люминесцентные свойства» был достигнут высокий энергетический выход ап-конверсионной люминесценции 6.73 % при плотности мощности накачки 1 Вт/см² для состава Sr_{0.935}Yb_{0.050}Er_{0.015}F_{2.065}, синтезированного с фтор-агентом NH₄F (изб. 7%). При синтезе с NaF и KF максимальный энергетический выход ап-конверсионной люминесценции при плотности мощности накачки 0.1 Вт/см² составил 0.83 и 0.93 % для составов Sr_{0.935}Yb_{0.050}Er_{0.015}F_{2.065} и Sr_{0.935}Yb_{0.03}Er_{0.02}F_{2.05}, соответственно.

Было установлено, что при синтезе с использованием NH₄F (избыток 114 %) в качестве фтор-агента, энергетический выход апконверсионной люминесценции существенно ниже, нежели чем при использовании 7 % избытка NH₄F.

Рис. 4. Диаграмма энергетического выхода ап-конверсионной люминесценции твердых растворов $Sr_{1-x-y}Yb_xEr_yF_{2+x+y}$ в зависимости от концентраций Yb/Er.

Максимальный квантовый выход ап-конверсионной люминесценции (2.8 %) при плотности мощности накачки 10 Вт/см² был достигнут для образца состава $Sr_{0.96}Yb_{0.02}Er_{0.02}F_{2.04}$ (измерения выполнены в Карлсруйском Технологическом Институте).

<u>В параграфе 3.2</u> представлены результаты синтеза образцов твердых растворов состава $Sr_{1-x-y}Yb_xTm_yF_{2+x+y}$ (x = 0.010-0.300; y = 0.001-0.060) при использовании различных методик осаждения: прямое,

обратноеи совместное осаждение исходных растворов, а также при использовании различных фтор-агентов (NH₄F, HF). При использовании в качестве фтор-агента фтороводородной кислоты (прямое осаждение) образец морфологически неоднороден – наблюдается широкий разброс по размеру частиц от 150 до 400 нм, с присутствием блоков размером до 2 мкм.

Было установлено, что при прямом и обратном синтезе при использовании фторида аммония существует область составов 0.10<x+y<0.24, где наблюдается сосуществование двух структурноподобных твердых растворов, отличающихся параметром решетки.

При использовании NH₄F в качестве фтор-агента термообработка при 600 °C приводит к спеканию двух твердых растворов в один с выравниванием по составу. Совместное осаждение в присутствии фторида аммония приводит к образованию однофазных твердых растворов во всем диапазоне концентраций.

Морфология частиц независимо от метода синтеза (прямого, обратного и совместного) сохраняется. Более узкий диапазон распределения частиц по размерам (45÷85 нм) наблюдается при прямом методе синтеза. При обратном методе синтеза размер частиц лежит в диапазоне от 50 до 170 нм. При совместном осаждении частицы становятся более округлыми, размером 20÷100 нм.

Наибольший энергетический выход ап-конверсионной люминесценции был достигнут для состава $SrF_2:5$ мол.% $Yb^{3+}:0.1$ мол.% Tm^{3+} (1.59 %, P = 1 BT/см²), синтезированного по обратной методике.

<u>В параграфе 3.3</u> представлены результаты по синтезу порошков твердых растворов $Sr_{1-x-y-z}Yb_xEr_yTm_zF_{2+x+y+z}$ при различном соотношении концентраций Yb:Er:Tm (0.100: 0.010: 0.005, 0.200: 0.010: 0.005 и 0.200: 0.010: 0.010) методом соосаждения из водных растворов при использовании различных фтор-агентов и их избытка.

При использовании NH₄F (изб. 114 %), синтез приводил к образованию однофазных порошков флюоритовой структуры.

При использовании NH₄F (изб. 7 %) в качестве фтор-агента синтез образцов твердого раствора $Sr_{1-x-y-z}Yb_xEr_yTm_zF_{2+x+y+z}$ приводил к образованию структурно неоднородных образцов флюоритовой структуры с похожими параметрами решетки, однако после термообработки при 600 °C образцы становились структурно однородными.

При использовании HF в качестве фтор-агента синтез образцов твердого раствора $Sr_{1-x-y-z}Yb_xEr_yTm_zF_{2+x+y+z}$ также приводил к образованию структурно неоднородных образцов флюоритовой структуры с похожими параметрами решетки, причем после высокотемпературной обработки при 400–600 °С неоднородность сохранялась.

Было установлено, что тип фтор-агента и высокотемпературная обработка влияют на микроструктуру полученных образцов твердых растворов состава $Sr_{1-x-y-z}Yb_xEr_yTm_zF_{2+x+y+z}$. При синтезе с NH₄F (изб. 114 %) порошок состоит из наночастиц размером от 20 до 80 нм. После высокотемпературной обработки при 600 °C наблюдается агломерация частиц, они приобретают округлую форму, распределение частиц по размерам составляет 50-150 нм. Уменьшение избытка фторида аммония до 7 % незначительно влияет на морфологию частиц – порошок состоит из частиц размером 30-100 нм. При использовании HF в качестве фтор-агента морфология частиц существенно меняется – порошок неоднороден по составу и состоит из небольших частиц, размером около 10 нм, и микроблоков длиной более 4 мкм и шириной 100-200 нм.

Была достигнута люминесценция белого света с координатами цветности x=0.308 и y=0.332 для люминофора $Sr_{0.785}Yb_{0.200}Er_{0.010}Tm_{0.005}F_{2.215}$ при плотности мощности накачки 0.4 BT/см² (EY = 0.10 %).

<u>Параграф 3.4</u> посвящен алгоритму расчета координат цветности смесей ап-конверсионных люминофоров SrF₂:Yb:Er и SrF₂:Yb:Tm. В случае механической смеси двух ап-конверсионных люминофоров, содержащих красный, зеленый и синий цвет, возможна настройка координат цветности. Цвет люминесценции может быть зеленым, желтым, оранжевым или красным для Er люминофоров, и синим, пурпурным или красным для Tm люминофоров. После определения координат цветности исходных компонентов были рассчитаны координаты цветности для конечной смеси.

Для получения механической смеси были выбраны образцы апконверсионных люминофоров с наибольшими величинами энергетического выхода 6.73 % и 5.75 % для SrF₂:Yb:Er и 1.59 % для SrF₂:Yb:Tm с координатами цветности (0.41; 0.55), (0.47; 0.50) и (0.17; 0.13), соответственно.

Механические смеси заданного состава с рассчитанными координатами цветности готовили путем тщательного перемешивания двух исходных порошков-люминофоров в агатовой ступке в течение 30 мин. Для приготовленных механических смесей были определены координаты цветности, которые близки к расчетным (рис. 5, Табл. 1).

Сопоставляя данные по энергетическим выходам алконверсионной люминесценции механических смесей белого света (Табл. 1) с ранее представленными данными в параграфе 3.3 можно отметить, что энергетический выход механических смесей 3.50 % на основе SrF_2 :Yb:Er и SrF_2 :Yb:Tm значительно превышает энергетический выход (0.10 %) алконверсионных люминофоров на основе SrF_2 :Yb:Er:Tm с тройным легированием.

13

Рис. 5. Сравнение экспериментальных (♦) и расчетных (▲) координат цветности (● – номера образцов; W – белый свет; CW – холодный белый свет).

Смесь	EY, %	Экспериментальные координаты цветности	Расчетные координаты цветности
5-4 (27% – 73%)	4.63	(x = 0.403; y = 0.427)	(x = 0.410; y = 0.430)
5-4 (54% – 46%)	3.50	(x = 0.320; y = 0.312)	(x = 0.333; y = 0.333)
5-4 (77% – 23%)	2.55	(x = 0.261; y = 0.228)	(x = 0.250; y = 0.218)
5-1 (29% – 71%)	5.24	(x = 0.360; y = 0.491)	(x = 0.351; y = 0.473)
5-1 (58% – 42%)	3.75	(x = 0.294; y = 0.370)	(x = 0.292; y = 0.350)
5-1 (79% – 21%)	2.67	(x = 0.228; y = 0.260)	(x = 0.210; y = 0.250)

Табл. 1. Сравнение экспериментальных и расчетных координат цветности.

<u>В параграфе 3.5</u> представлены результаты по получению оптической керамики (Sr_{0.812}Yb_{0.161}Er_{0.027}F_{2.188}) толщиной 5 мм (рис. 6), изготовленной методом горячего прессования порошка (T = 1000 °C, P = 250 МПа, вакуум 10^{-2} Topp). Керамика продемонстрировала коэффициент пропускания более 80 % в спектральном диапазоне 0.42–7.00 мкм (рис. 7 и 8). Спектры пропускания керамики содержит полосы поглощения иттербия и эрбия. В ИК-спектре (рис. 8) различимы полосы поглощения воды и CO.

Рис. 6. Образец оптической керамики состава Sro.812Ybo.161Ero.027F2.188.

Рис. 7. Спектр пропускания оптической керамики в диапазоне 300–1700 нм.

Рис. 8. Спектр пропускания оптической керамики в диапазоне 1250–25000 нм.

Глава 4 посвящена обсуждению результатов исследований.

Методом соосаждения из водных нитратных растворов были синтезированы однофазные порошки концентрационных серий твердых растворов Sr_{1-x-y}Yb_xEr_yF_{2+x+y} при различных величинах избытка фтор-агента и разных его типах (HF, NH₄F, NaF и KF). Методами РФА, СЭМ, РСМА и ДТА/ТГ определено, что дисперсность и морфология порошков фаз Sr_{1-x}R_xF_{2+x} (R = Yb, Er) зависят от природы фторирующего агента и от суммарной концентрации РЗЭ (x+y = $2.5 \div 30.0$). С увеличением суммарного содержания РЗЭ в твердом растворе размер частиц значительно уменьшается от 80 до 40 нм, а при увеличении температуры термообработки от 45 до 600 °C размеры наночастиц возрастают от 10 до 80 нм.

При использовании в качестве фтор-агента HF (12 кр. изб.) характерной особенностью микроструктуры полученного порошка является ярко выраженная неоднородность гранулометрического состава – порошок состоит из крупных ограненных кристаллитов размером до 500 нм и мелких кристаллитов размером около 10 нм, причем состояние морфологической разделенности на большие и малые кристаллиты сохраняется после высокотемпературной обработки при 600 °C. Такое явление может быть связано с реализацией в процессе синтеза неклассического механизма роста кристаллов путем агломерации наночастиц [18]. Мелкие кристаллиты являются первично образующими частицами, в крупные – продуктом их коллективной агломерации. При использовании других фторирующих агентов морфологическая неоднородность не выявлена. При использовании NH₄F в качестве фтор-агента образец состоял из частиц размером около 80 нм. При синтезе с NaF и KF в качестве фтор-агентов синтезируются частицы со средним размером 400 нм и 200 нм, соответственно.

Было доказано образование нового флюоритового твердого раствора Sr_{1-x-z}R_x(NH₄)_zF_{2+x-z} при легировании фторида стронция ионами редкоземельных элементов при использовании избытка фторида аммония 114% и установлены концентрационные границы его существования: $z = 0.013\div0.070$ мол. д. Аналогичные твердые растворы с присутствием одно- и трехвалентных катионов в структуре флюорита описаны в литературе для систем типа NaF-CaF₂-RF₃, R = Y [19], Yb [20], NaF-PbF₂-BiF₃ [21], NaF-BaF₂-GdF₃ [22], и приводят к резкому расширению областей гомогенности твердых растворов: $2Sr^{2+} \leftrightarrow R^{3+} + M^+$, что соответствует гетеровалентному сопряженному изоморфизму без изменения числа ионов в элементарной ячейке [23, 24]. Для твердых растворов на основе фторида стронция такой тип изоморфизма ранее не наблюдался.

Выявлено, что твердый раствор $Sr_{I-x-z}R_x(NH_4)_zF_{2+x-z}$ имеет существенное значение для технологии получения нанофторидов, т.к. позволяет предотвратить процесс пирогидролиза наночастиц в процессе термообработки за счет выделяющегося при изоструктурном распаде HF,

что позволило синтезировать оптическую керамику с пропусканием более 80 %.

Для состава Sr_{0.935}Yb_{0.050}Er_{0.015}F_{2.065}, синтезированного с фторагентом NH₄F (изб. 7%) был достигнут высокий энергетический выход апконверсионной люминесценции 6.73 % при плотности мощности накачки 1 Вт/см². Максимальный квантовый выход (2.8 %) при плотности мощности накачки 10 Вт/см² был достигнут для состава Sr_{0.96}Yb_{0.02}Er_{0.02}F_{2.04}.

Высокий энергетический выход, достигнутый в матрице фторида стронция, может быть связан с образованием кластеров типа R_6F_{36} и R_6F_{37} в твердом растворе на основе фторида стронция [25, 26].

Разработан и успешно верифицирован алгоритм расчета координат смесей ап-конверсионных механических люминофоров цветности SrF₂:Yb:Er и SrF₂:Yb:Tm, который позволяет плавно изменять координаты цветности получаемой смеси. Зависимость координат цветности механической смеси люминофоров от массового содержания исходных порошковых люминофоров имеет линейный характер. Синтез образцов с различным содержанием иттербия-эрбия и иттербия-тулия позволяет варьировать координаты цветности исходных компонентов и тем самым расширять цветовую гамму. Было обнаружено, что механические смеси двух ап-конверсионных люминофоров SrF2:Yb:Er и SrF2:Yb:Tm обладают существенно большими величинами энергетического выхода апконверсионной люминесценции (3.50 %) нежели чем люминофор с совместным легированием SrF₂:Yb:Er:Tm (0.10 %).

В заключении представлены основные выводы к работе.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ РАБОТЫ

1. Разработаны методики синтеза однофазных твёрдых растворов на основе SrF_2 :Yb:R (R = Er, Tm, Er:Tm) методом соосаждения из водных растворов при использовании NH₄F, NaF и KF в качестве фтор-агентов. Показано, что использование HF в качестве фтор-агента приводит к образованию двухфазных образцов.

2. Открыт новый твердый раствор $Sr_{1-x-z}R_x(NH_4)_zF_{2+x-z}$ при легировании фторида стронция ионами редкоземельных элементов при использовании избытка фторида аммония 114 %, который имеет существенное значение для технологии получения нанофторидов, т.к. позволяет предотвратить процесс пирогидролиза наночастиц в процессе термообработки за счет выделяющегося при изоструктурном распаде HF.

3. Определены составы люминофоров, демонстрирующие высокие величины интенсивности ап-конверсионной люминесценции, не уступающие мировым аналогам: — Наибольшие величины энергетического выхода зафиксированы для составов $SrF_2:5\%$ Yb³⁺:1.5%Er³⁺ (6.73 %, P = 1 Bt/cm²) и SrF₂:5% Yb³⁺:0.1%Tm³⁺ (1.59 %, P = 1 Bt/cm²).

— Наибольшая величина квантового выхода определена для состава $SrF_2:2\%$ Yb³⁺:2% Er³⁺ (2.80 %, P = 10 Bt/см²).

4. Разработан и верифицирован алгоритм вариации координат цветности на основе механических смесей ап-конверсионных люминофоров SrF₂:Yb:Er и SrF₂:Yb:Tm. Показано, что интенсивность люминесценции белого света на основе механических смесей существенно выше (3.50 %), чем интенсивность индивидуального твёрдого раствора $Sr_{0.785}Yb_{0.200}Er_{0.010}Tm_{0.005}F_{2.215}(0.10 %).$

5. Методом горячего прессования (T = 1000 °C, P = 250 МПа, вакуум 10^{-2} Торр) была изготовлена оптическая керамика ($Sr_{0.82}Yb_{0.15}Er_{0.03}F_{2.18}$) с коэффициентом пропускания более 80 % в спектральном диапазоне 0.42–7.00 мкм.

ЦИТИРУЕМАЯ ЛИТЕРАТУРА

1. Lyapin, A.A. Upconversion luminescence of Ca_{1-x}Ho_xF_{2+x} and Sr_{0.98-x}Er_{0.02}Ho_xF_{2.02+x} powders under excitation by infrared laser / A.A. Lyapin, S.V. Kuznetsov, P.A. Ryabochkina, A.P. Merkulov, M.V. Chernov, Y.A. Ermakova, A.A. Luginina, P.P. Fedorov // Laser Physics Letters. – 2017. – Vol. 14, No 7. – P. 076003.

2. Wolfbeis, O.S. An overview of nanoparticles commonly used in fluorescent bioimaging / O.S. Wolfbeis // Chemical Society Reviews. -2015. - Vol. 44. -P.4743-4768.

3. Li, J. Invisible luminescent inks and luminescent films based on lanthanides for anti-counterfeiting / J. Li, D. Xia, M. Gao, L. Jiang, S. Zhao, G. Li // Inorganica Chimica Acta. – 2021. – Vol. 526. – P. 120541.

4. Runowski, M. Lifetime nanomanometry – high-pressure luminescence of up-converting lanthanide nanocrystals – SrF_2 : Yb^{3+} , Er^{3+} / M. Runowski, J. Marciniak, T. Grzyb, D. Przybylska, A. Shyichuk, B. Barszcz, A. Katrusiak, S. Lis // Nanoscale. – 2017. – Vol. 9, Nº 41. – P. 16030–16037.

5. Richards, B.S. Photon upconversion for photovoltaics and photocatalysis: a critical review / B.S. Richards, D. Hudry, D. Busko, A. Turshatov, I.A. Howard // Chemical Reviews. – 2021. – Vol. 121. – P. 9165–9195.

6. Joseph, R.E. Bright constant color upconversion based on dual 980 and 1550 nm excitation of SrF₂:Yb³⁺, Er³⁺ and β -NaYF₄:Yb³⁺, Er³⁺ micropowders – considerations for persistence of vision displays / R.E. Joseph, D. Hudry, D. Busko, D. Biner, A. Turshatov, K. Krämer, B.S. Richards, I.A. Howard // Optical Materials. – 2021. – Vol. 111. – P. 110598.

7. Auzel, F. Compteur quantique par transfert d'energie entre deux ions de terres rares dans un tungstate mixte et dans un verre / F. Auzel // CR Acad. Sci. Paris. – 1966. – Vol. 262. – P. 1016-1019.

8. Ovsyankin, V.V. Mechanism of summation of electronic excitation in activated crystals / V.V. Ovsyankin, P.P. Feofilov // JETP Letters. – 1966. – Vol. 3. – P. 494–497.

9. Dieke, G.H. The spectra of the doubly and triply ionized rare earths / G.H. Dieke, H.M. Crosswhite // Applied Optics. – 1963. – Vol. 2. – P. 675–686.

10. Auzel, F. Upconversion and anti-stokes process with f and d ions in solids / F. Auzel // Chemical Reviews. -2004. - Vol. 104, N 1. - P. 139–174.

11. Kano, T. NaLnF₄:Yb³⁺,Er³⁺ (Ln:Y, Gd, La): efficient green-emitting infrared-excited phosphors / T. Kano, H. Yamamoto, Y. Otomo // Journal of the Electrochemical Society. -1972. – Vol. 119, N 11. – P. 1561–1564.

12. Kaiser, M. Power-dependent upconversion quantum yield of NaYF₄:Yb³⁺, Er^{3+} nano- and micrometer-sized particles – measurements and simulations / M. Kaiser, C. Würth, M. Kraft, I. Hyppänen, T. Soukka, U. Resch-Genger // Nanoscale. – 2017. – Vol. 9, No 28. – P. 10051–10058.

13. Etchart, I. Oxide phosphors for efficient light upconversion: Yb^{3+} and Er^{3+} co-doped Ln_2BaZnO_5 (Ln = Y, Gd) / I. Etchart, A. Huignard, M. Berard, M.N. Nordin, I. Hernandez, R.J. Curry, W.P. Gillin, A.K. Cheetham // Journal of Materials Chemistry. – 2010. – Vol. 20. – P. 3989–3994.

14. M. Pokhrel, M. Highly efficient NIR to NIR and VIS upconversion in Er^{3+} and Yb³⁺ doped in M₂O₂S (M = Gd, La, Y) / M. Pokhrel, G.A. Kumar, D.K. Sardar // Journal of Materials Chemistry A. – 2013. – Vol. 1. No 38. – P. 11595–11606.

15. Reig, D.S. Upconversion properties of SrF_2 : Yb^{3+} , Er^{3+} single crystals / D.S. Reig, B. Grauel, V.A. Konyushkin, A.N. Nakladov, P.P. Fedorov, D. Busko, I. A. Howard, B.S Richards, U. Resch-Genger, S. Kuznetsov, A. Turshatov, C. Würth // Journal of Materials Chemistry C. – 2020. – Vol. 8. – P. 4093–4101.

16. Madirov, An up-concentration luminophore with high quantum yield and brightness based on BaF_2 :Yb³⁺, Er^{3+} single crystals / E. E. Madirov, V.A. Konyushkin, A.N. Nakladov, P.P. Fedorov, T. Bergfeldt, D. Busko, I.A. Howard, B.S. Richards, S.V. Kuznetsov, A. Turshtov // Journal of Materials Chemistry C. -2021. - Vol. 9. - P. 3493 - 3503.

17. Wang, F. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping / F. Wang, Y. Han, C.S. Lim, Y.H. Lu, J. Wang, J. Xu, H.Y. Chen, C. Zhang, M.H. Hong, X.G. Liu // Nature. – 2010. – Vol. 463. – P. 1061–1065.

18. Иванов, В.К. Ориентированное сращивание частиц: 100 лет неклассического механизма роста кристаллов / В.К. Иванов, П.П. Федоров, А.Е. Баранчиков, В.В. Осико // Успехи Химии. – 2014. – Т. 83, № 12. – С. 1204–1222.

19. Sobolev, B.P. The rare earth trifluorides. Part 1. The high temperature chemistry of the rare earth trifluorides / B. P. Sobolev. – Barcelona: Institut d`Estudis Catalans, 2000. – 530 p. ISBN 84-7283-518-9.

20. Федоров, П.П. Фазовая диаграмма системы NaF-CaF₂-YbF₃ / П.П. Федоров, А.В. Раппо // Журнал Неорганической Химии. – 2008. – Т. 53, № 7. – С. 1210–1213.

21. Бучинская, И.И. Дифторид свинца и его взаимодействие с другими неорганическими фторидами / И.И. Бучинская, П.П. Федоров // Успехи Химии. – 2004. –Т. 73, № 4. – С. 404–434.

22. Павлова, Л.Н. Упорядочение гетеровалентного твердого раствора флюоритовой структуры в системе NaF-BaF₂-GdF₃ / Л.Н. Павлова, П.П. Федоров, Л.А. Ольховая, Д.Д. Икрами, Б.П. Соболев // Кристаллография. – 1993. – Т. 38, –№ 2. – С. 164–169.

23. Урусов, В.С. Теория изоморфной смесимости / В.С. Урусов. – Москва: Наука, 1977.

24. Fedorov, P.P. Heterovalent isomorphism and solid solutions with a variable number of ions in the unit cell / P.P. Fedorov // Russian Journal of Inorganic Chemistry. – 2000. – Vol. 45. – P. S268–S291 (Suppl. 3).

25. Fedorov, P.P. Association of point defects in non-stoichiometric $M_{1-x}R_4F_{2+x}$ fluorite-type solid solutions / P.P. Fedorov // Butlletí de les Societats Catalanes de Física, Química, Matemàtiques i Tecnologia. – 1991. – Vol. XII, No. 2. – P. 349–381.

26. Kazanskii, S.A. EPR spectra and crystal field of hexamer rare-earth clusters in fluorites / S.A. Kazanskii, A.I. Ryskin, A.E. Nikiforov, A.Y. Zaharov, M.Y. Ougrumov, G.S. Shakurov // Physical Review B. – 2005. – Vol. 72, № 1. – P. 014127.

ПУБЛИКАЦИИ ПО ТЕМЕ ДИССЕРТАЦИИ

1. Rozhnova, Yu.A. White light luminophores based on Yb³⁺/Er³⁺/Tm³⁺coactivated strontium fluoride powders / **Yu.A. Rozhnova**, A.A. Luginina, V.V. Voronov, R.P. Ermakov, S.V. Kuznetsov, A.V. Ryabova, D.V. Pomonova, V.V. Arbenina, V.V. Osiko, P.P. Fedorov // Materials Chemistry and Physics. – 2014. – Vol. 148, № 1–2. – P. 201–207.

2. Rozhnova, Yu.A. New Sr_{1-x-y}R_x(NH₄)_yF_{2+x-y} (R = Yb, Er) solid solution as precursor for high efficiency up-conversion luminophor and optical ceramics on the base of strontium fluoride / **Yu.A. Rozhnova**, S.V. Kuznetsov, A.A. Luginina, V.V. Voronov, A.V. Ryabova, D.V. Pominova, R.P. Ermakov, V.A. Usachev, N.E. Kononenko, A.E. Baranchikov, V.K. Ivanov, P.P. Fedorov // Materials Chemistry and Physics. – 2016. – Vol. 172. – P. 150–157.

3. Ермакова, Ю.А. Синтез и характеризация порошков SrF₂:Yb:Tm / Ю.А. Ермакова, С.В. Кузнецов, М.Н. Маякова, В.В. Воронов, Р.П.

Ермаков, П.П. Федоров // Конденсированные среды и межфазные границы // – 2017. – Т. 9. – С. 57–67.

4. Kuznetsov, S. Up-conversion quantum yield of SrF_2 :Yb³⁺,Er³⁺ submicron particles prepared by precipitation from aqueous solution / S. Kuznetsov, **Yu. Ermakova**, V. Voronov, P. Fedorov, D. Busko, I.A. Howard, B.S. Richards, A. Turshatov // Journal of Materials Chemistry C. –2018. – Vol. 6. – P. 598–604.

5. Ermakova, Yu.A. Algorithm for calculation of up-conversion luminophores mixtures chromaticity coordinates / **Yu.A. Ermakova**, D.V. Pominova, V.V. Voronov, S.V. Kuznetsov // Journal of Fluorine Chemistry. – 2020. – Vol. 237. – P. 109607.

6. Ermakova, Yu.A. Synthesis of SrF₂:Yb:Er ceramic precursor powder by co-precipitation from aqueous solution with different fluorinating media: NaF, KF and NH₄F / **Yu.A. Ermakova**, D.V. Pominova, V.V. Voronov, A.D. Yapryntsev, V.K. Ivanov, N.Yu. Tabachkova, P.P. Fedorov, S.V. Kuznetsov // Dalton Transactions. – 2022. – Vol. 51. – P. 5448.