На правах рукописи

КРЕЙЦБЕРГ АЛЁНА ЮРЬЕВНА

ФОРМИРОВАНИЕ НАНОСТРУКТУР ПРИ КОМБИНИРОВАННОЙ ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКЕ И УПРАВЛЕНИЕ ФУНКЦИОНАЛЬНЫМИ ХАРАКТЕРИСТИКАМИ СПЛАВОВ Ті-Ni С ПАМЯТЬЮ ФОРМЫ

Специальность 05.16.01 – «Металловедение и термическая обработка металлов и сплавов»

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата технических наук

Диссертационная работа выполнена в Федеральном государственном автономном образовательном учреждении высшего профессионального образования «Национальный исследовательский технологический университет «МИСиС» (НИТУ «МИСиС»). Часть исследований была выполнена в Высшей технологической школе (ВТШ), г. Монреаль, Канада.

Научный руководитель:	Профессор, доктор физико-математических наук Прокошкин Сергей Дмитриевич (НИТУ «МИСиС»)
Научный консультант:	Профессор, кандидат технических наук Браиловский Владимир (ВТШ, Канада)
Официальные оппоненты:	Профессор, доктор технических наук Столяров Владимир Владимирович (ИМАШ РАН)
	Доцент, кандидат физико-математических наук Шеляков Александр Васильевич (НИЯУ «МИФИ»)
Ведущая организация:	Федеральное государственное унитарное предприятие «Институт металлургии и металловедения им. А.А. Байкова РАН»

Защита состоится «19» июня 2014 года в 15³⁰ ч на заседании диссертационного совета Д 212.132.08 при Федеральном государственном автономном образовательном учреждении высшего профессионального образования «Национальный исследовательский технологический университет «МИСиС» по адресу: 119049, г. Москва, Ленинский проспект, д. 4, ауд. Б-607.

С диссертацией можно ознакомиться в библиотеке НИТУ «МИСиС» и на сайте http://www.misis.ru.

Автореферат разослан «___»

2014 года.

Ученый секретарь диссертационного совета Проф. д.ф.-м.н.

С.И. Мухин

Общая характеристика работы

Актуальность работы:

Сплавы с памятью формы (СПФ) на основе Ті-Ni используются в качестве материалов для термодатчиков, термоактиваторов (преимущественно эффект памяти формы - ЭПФ) и медицинских имплантов и инструментов (преимущественно эффект сверхупругости - СУ). Современное развитие подобных устройств требует повышения как величины обратимой деформации и реактивного напряжения, так и долговечности и стабильности при многократной реализации эффекта памяти формы функциональных характеристик и сверхупругости. Большие возможности в этом направлении открывает использование наноструктурного состояния. Одним из основных методов формирования наноструктур в СПΦ Ti-Ni является интенсивная холодная пластическая деформация с последеформационным отжигом (ПДО) по определенным режимам. Ранее было показано, что холодная прокатка (XП) с истинной деформацией более *e*=0.5 наряду с развитием дислокационной субструктуры формирует смесь нанокристаллической и аморфной структур. Количество этой смеси постепенно увеличивается и при e>1 она доминирует. ПДО приводит к нанокристаллизации аморфной фазы и росту зерен исходной нанокристаллической структуры (НКС). Было показано, что формирование в СПФ Ті-Ni наноструктур значительно повышает их «статические» функциональные свойства. Так, формирование нанокристаллической структуры в B2-аустените сплавов Ti-Ni при последеформационном отжиге позволяет получить более высокий «дислокационный» предел текучести (1500 - 1600 МПа и более в нестареющем и до 1900 МПа в стареющем), чем в случае полигонизованной субструктуры (1000 – 1200 МПа в обоих сплавах) и рекристаллизованной структуры (300 – 400 МПа); разность между дислокационным и фазовым пределами текучести сплава с нанокристаллической структурой также гораздо больше. Этот фактор определяет более высокий ресурс реактивного напряжения и более полную реализацию ресурса обратимой деформации в нанокристаллическом сплаве, особенно в стареющем.

Однако одного достижения высоких «статических» функциональных свойств за счет в СПФ Ті-Ni недостаточно. Другим важным формирования НКС требованием. предъявляемым к СПФ Ті-Ni, является стабильность величины обратимой деформации и реактивного напряжения при эксплуатации, а также функциональная усталостная долговечность. В настоящее время показано, что нанокристаллическая структура, формирующаяся в результате интенсивной пластической деформации (ИПД) и ПДО, оказалась наиболее эффективной при небольшом числе циклов реализации реактивного напряжения и обратимой деформации ЭПФ и СУ. В то же время наилучшие усталостные функциональные характеристики наблюдаются в случае формирования при ПДО смешанной структуры: НКС+ наносубзеренной (НСС). Однако эти результаты явно зависят от повреждаемости (образования микротрещин) механической образцов В процессе интенсивной холодной прокатки, что служит одной из причин снижения долговечности с чисто нанокристаллической структурой. Следовательно, материалов потенциал усталостных функциональных свойств, заложенный в НКС, реализуется не полностью. В этой связи важно изучить роль фактора механической повреждаемости при сохранении конечного наноструктурного состояния, а также возможности устранения его отрицательного влияния на функциональную долговечность, например, путем введения в схему ТМО теплой деформации и/или промежуточного отжига.

С другой стороны, ТМО по различным режимам формирует разную кристаллографическую текстуру СПФ Тi-Ni, которая влияет на величину обратимой деформации и сверхупругое деформационное поведение. В этой связи необходимо также изучить влияние текстуры на функциональные свойства наноструктурного сплава Ti-Ni, а также попытаться оценить влияние текстурного и структурного факторов на величины обратимой деформации и реактивного напряжения, их циклическую стабильность и долговечность.

Таким образом, <u>целью настоящей работы</u> было изучить формирование наноструктур, текстуру и механическую повреждаемость при комбинированной ТМО, включающей холодную деформацию, теплую деформацию и промежуточный отжиг в разных сочетаниях, и их влияние на статические и усталостные функциональные свойства сплавов Ti-Ni с памятью формы.

Для реализации поставленной цели работы были определены следующие задачи:

- Провести термомеханическую обработку СПФ Ti-Ni по разным режимам, включающим интенсивную холодную прокатку, теплую прокатку, промежуточный отжиг в различных сочетаниях и последеформацонный отжиг, формирующий наноструктурное состояние.
- Исследовать влияние термомеханической обработки по разным режимам ТМО на структуру СПФ Ті-Ni.
- Определить кристаллографическую текстуру СПФ Ті-Ni после ТМО по разным режимам.
- Исследовать влияние термомеханической обработки на параметры кристаллической решетки СПФ Ті-Ni и рассчитать теоретический ресурс обратимой деформации СПФ Ті-Ni после ТМО по разным режимам.
- Экспериментально определить максимальную обратимую деформацию СПФ Ті-Ni после ТМО по разным режимам.
- Исследовать влияние термомеханической обработки на механическую повреждаемость (трещинообразование) СПФ Ті-Ni;
- Исследовать влияние термомеханической обработки на «статические» функциональные свойства (обратимая деформация и реактивное напряжение) СПФ Ті-Ni, в том числе в условиях реализации аномально высокой обратимой деформации.
- Исследовать влияние термомеханической обработки на усталостные функциональные свойства (долговечность и стабильность свойств) СПФ Ті-Ni.

Научная новизна работы заключается в следующем:

- 1. Установлены закономерности формирования структуры, текстуры, механического и термомеханического поведения СПФ Ті-Ni в результате последеформационного отжига в цикле ТМО, сочетающей холодную и теплую деформацию с промежуточным отжигом.
- 2. Установлено влияние основных факторов на величину обратимой деформации СПФ Ті-Ni, подвергнутого комбинированной ТМО: «текстурный» определяет теоретический ресурс обратимой деформации в поликристалле по сравнению с предельной деформацией, реализуемой в монокристалле, а «структурный» - еще и степень его реализации. В случае формирования разных типов наноструктур и их сочетаний структурный фактор доминирует.
- Показано, что расчет теоретического ресурса обратимой деформации для текстурованного поликристалла дает адекватную его оценку только при достаточно полном учете распределения ориентировок аустенита и в предположении реализации только наиболее благоприятного ориентационного варианта мартенсита в каждом зерне аустенита.
- Установлена закономерность изменения вкладов механизмов ЭПФ и СУ в обратимую деформацию при переходе от нанокристаллического и наносубзеренного состояний В2аустенита СПФ Ті-Ni к рекристаллизованному, в том числе в области аномально высоких ее значений.

Практическая ценность работы заключается в следующем:

- 1. Использование методов комбинированной ТМО, включающей холодную и теплую прокатку с промежуточным отжигом в разных сочетаниях позволило получить сплав Ti-Ni с нанокристаллической и смешанной нанокристаллической + наносубзеренной структурами и текстурой прокатки с основной компонентой {100}<110>_{B2}, обладающий высокими статическими и усталостными функциональными свойствами, включая высокие значения обратимой деформации и реактивного напряжения, высокую функциональную долговечность и стабильность свойств при термомеханическом и механическом циклировании.
- 2. Определены оптимальные из использованных режимов ТМО с точки зрения повышения комплекса функциональных свойств СПФ Ті-Ni и направление их дальнейшей оптимизации на основе формирования НКС из субмикрокристаллической структуры, полученной методом теплого равноканального углового прессования.
- 3. Разработанные режимы ТМО были применены в технологической цепочке изготовления самофиксирующихся скоб для сшивания ран век, действующих на основе ЭПФ и обратимого ЭПФ.

Положения, выносимые на защиту:

- 1. Разработанные режимы ТМО, включающей интенсивную холодную и теплую прокатку с промежуточным отжигом, для формирования НК и смешанной НК+НС структур в сплаве Ti-50.26 ат.%Ni в результате последеформационного отжига.
- 2. Наблюдение закономерности формирования структуры B2-аустенита сплава Ti-50.26 ат.%Ni в результате TMO по режимам, включающим холодную и теплую прокатку с накопленной деформацией *e*=1.2 и промежуточный отжиг при 400°C, 1 ч в зависимости от вклада тепловой энергии.
- 3. Выявленная неадекватность оценки теоретического ресурса обратимой деформации поликристалла с учетом полюсной плотности только трех ориентировок (<100>, <110> и <111>В2) и необходимость достаточно полного учета распределения ориентировок аустенита в предположении реализации наиболее благоприятного ориентационного варианта мартенсита в каждом зерне аустенита.
- 4. Наблюдение текстурной компоненты {100}[110] В2-аустенита в качестве основной после ТМО по всем режимам, обеспечивающим большой ресурс обратимой деформации в направлении прокатки. Включение в схему ТМО теплой прокатки и промежуточного отжига приводит к увеличению вклада основной текстурной компоненты.
- 5. Наблюдение наибольшей величины обратимой деформации в сплаве с нанокристаллической преимущественно структурой, когда разность между дислокационным и фазовым пределом текучести наибольшая.
- 6. Достижение максимальной величины реактивного напряжения в случае формирования преимущественно НКС в СПФ Ті-Ni.
- 7. Положение о влиянии структурного и текстурного факторов на величину и степень реализации ресурса обратимой деформации в поликристаллическом СПФ Ti-Ni и преимущественном влиянии структурного фактора в случае формирования НК и смешанной HC+HK структур.
- 8. Обнаруженная на сплаве Ti-50.7 ат.%Ni закономерность изменения вкладов ЭПФ и сверхупругости в обратимую деформацию при переходе от нанокристаллического и наносубзеренного состояний к рекристаллизованному, в том числе в области аномальных ее значений.

- 9. Уменьшение концентрации и длины краевых микротрещин в СПФ Ті-Ni при включении в схему ТМО теплой деформации (при 150°С) и промежуточного отжига (400°С, 1 ч) приводящего к формированию смешанной НК+НС структуры.
- 10. Заключение о положительном влиянии на функциональную долговечность СПФ Ті-Ni введения в схему ТМО теплой деформации и промежуточного отжига.

<u>Личный вклад автора</u>.

Основные результаты, изложенные в диссертации, получены лично автором. Автор принимал непосредственное участие в постановке задач, проведении экспериментальных исследований, интерпретации полученных результатов, формулировке основных положений, выводов, написании статей.

Вклад соавторов

Научный руководитель С.Д. Прокошкин (НИТУ «МИСиС») осуществлял научное руководство со стороны НИТУ «МИСиС», оказывал непосредственную поддержку в проведении испытаний структурного и рентгенографического анализа, расчёте и определении статических функциональных свойств, участвовал в обсуждении результатов. Научный консультант В. Браиловский (ВТШ, г. Монреаль, Канада) осуществлял руководство исследованиями, проведенными в ВТШ, г. Монреаль, Канада, оказывал поддержку в проведении текстурного анализа и усталостных функциональных испытаний, участвовал в обсуждении результатов. Помощь в подготовке образцов и проведении испытаний оказывали К. Инаекян (ВТШ) и С.М. Дубинский (НИТУ «МИСиС»). Расчет деформации решетки при мартенситном превращении с учетом влияния текстуры проводили совместно с А.В. Коротицким (НИТУ «МИСиС»). Часть исследований функциональных усталостных характеристик проводили совместно с Я. Факинелло (ВТШ). Исследование аномальной высокой обратимой деформации проведены совместно с Е.П. Рыклиной (НИТУ «МИСиС»).

Апробация работы

Основные результаты работы были представлены и обсуждены на следующих научных конференциях:

- 1. Международная конференция «Сплавы с эффектом памяти формы: свойства, технологии, перспективы», 26-30.05.2014, Витебск.
- 2. Международный научно-технический конгресс ОМД-2014, «Фундаментальные проблемы. Инновационные материалы и технологии», 14-17.04.2014, Москва.
- 3. VII-я Евразийская научно-практическая конференция «Прочность неоднородных структур», ПРОСТ 2014. 22-24.04.2014, Москва.
- 4. V-я-Всероссийская конференция по наноматериалам «НАНО 2013», 23-27.09.2013, Звенигород.
- 5. Международный симпозиум «Физика кристаллов 2013, V-я международная конференция «Кристаллофизика 21-го века» и «Третьи Московские чтения по проблемам прочности материалов». 28.10-02.11.2013, Москва.
- 6. Международная конференция «Shape Memory and Superelastic Technologies», SMST-2013. 12-16.05.2013, Прага, Чехия.
- 7. VI-я Евразийская научно-практическая конференция «Прочность неоднородных структур». ПРОСТ 2012, 17-19.04.2012, Москва.
- 8. Всероссийская конференция «Участники молодых научно-инновационных премий». 2010, Москва.

Результаты работы вошли в отчеты по научно-исследовательскому проекту Федеральной целевой программы «Исследования и разработки по приоритетным направлениям научно-технологического комплекса России, 2007-2013 годы»: «Сравнительное исследование сплошных и пористых сплавов Тi-Ni и безникелевых сплавов с памятью формы для медицинских применений: термомеханическая обработка, наноструктуры, сверхупругость и биосовместимость» (совместный НИТУ «МИСиС» - ВТШ, г. Монреаль, Канада). Госконтракт №11.519.11.3008 от 30.08.2011

Получены следующие награды:

- 1. Лауреат конкурса «У.М.Н.И.К.» ФСР МФП НТС (2010).
- 2. Победитель международной, межвузовской и институтской научно-технической конференции «64-е Дни науки студентов МИСиС», 2010, Москва.
- 3. За лучший доклад среди молодых ученых, представленный на VI-й Евразийской научнопрактической конференции «Прочность неоднородных структур», ПРОСТ 2012, Москва.
- 4. Диплом III степени за лучший доклад среди молодых ученых на V-ой Всероссийской конференции по наноматериалам, НАНО 2013, Москва.
- 5. Стипендиат Президента Российской Федерации для студентов и аспирантов на 2013/2014 учебный год.

Основное содержание диссертации опубликовано в 11 печатных работах, 4 из них в изданиях, рекомендованных ВАК, и 3 из них индексируемых в базах "Web of Science" и "Scopus".

Структура и объем работы:

Диссертация изложена на 156 страницах машинописного текста, состоит из введения, 5 глав, 8 выводов. Включает 60 рисунков, 21 таблиц, библиографический список из 111 наименования.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

ГЛАВА 1 содержит аналитический обзор литературы, посвященный анализу результатов исследований основных факторов, влияющих на величину обратимой деформации, реактивного напряжения и механическое поведение СПФ Ті-Ni. Проведен анализ особенностей формирования текстуры и структуры сплавов Тi-Ni в ходе его термомеханической обработки. Проанализировано влияние структуры сплавов Ti-Ni на усталостные функциональные свойства. Изложены результаты работ, в которых изучали долговечность СПФ Ti-Ni с использованием различных схем. Изучены предложенные методы залечивания структурных дефектов с целью увеличения долговечности сплава Ti-Ni. Показано, что усталостные функциональные свойства СПФ Ti-Ni в наноструктурном состоянии практически не исследованы. На основе анализа полученной информации были определены основные цели и задачи работы.

В ГЛАВЕ 2 представлен химический состав исследуемых сплавов, режимы термомеханической обработки, обоснован выбор температуры теплой деформации и описаны методики экспериментальных исследований.

В качестве объекта исследования были выбраны сплавы Ti-50.26 ат.%Ni и Ti-50.7 ат.%Ni. Сплав Ti-50.26 ат.%Ni («SAES GETTERS») получали в виде проволоки диаметром 1 мм после холодного волочения при комнатной температуре. Для устранения влияния предыстории перед термомеханической обработкой проводили гомогенизирующий отжиг при 700 °C, 1 час в электрической печи ("PYRADIA") с последующим охлаждением в воде.

Холодную прокатку проволоки проводили при комнатной температуре за 4-6 проходов в зависимости от степени деформации на четырехвалковом лабораторном прокатном стане «*FENN*». Истинную деформацию рассчитывали как $e=\ln(d/h)$ (где d – исходный диаметр проволоки, h – конечная толщина плющенки).

Теплую прокатку (ТП) проводили на этом же стане, оборудованном системой электроподогрева проволоки (ленты). Постоянный ток (с плотностью около 1 А/мм²) пропускали непосредственно через движущийся со скоростью 10 мм/с образец. Подвод электрического тока осуществляли при помощи скользящего графитового электроконтакта, находящегося на расстоянии 50 см от очага деформации, а токосъём непосредственно через деформирующие валки. Контроль температуры и обратную связь с источником тока осуществляли при помощи инфракрасного пирометра, снимающего показания температуры поверхности образца в непосредственной близости от очага деформации. Нагрев ленты до температуры в 150°С при (условно) теплой прокатке гарантировал условие деформирования материала в состоянии стабильного аустенита.

Термомеханическую обработку (ТМО) проводили по следующим схемам (таблица 1):

- Режим 1, ХП *e*=0.75 (за 4 прохода). Режим 2: *e*=1 (5 проходов) и режим 3: *e*=1.2 (6 проходов), соответствующие обозначениям режимов: **ХП(0.75)**, **ХП(1.0)**, **ХП(1.2)**;

Выбор таких степеней истинной деформации прокаткой (*e*=0.75, 1.0 и 1.2) был обоснован разной степенью аморфизации сплавов Ti-Ni, а следовательно, разным количеством нанокристаллической и наносубзеренной структур, формирующихся в ходе завершающей операцией ТМО по всем режимам – последеформационного отжига сплава при 400°C, 1ч.

Режим XП(1.2) служил в качестве контрольного, т.к. из всего спектра использованных режимов, после данного достигается наибольшая степень аморфизации, а следовательно, может быть получено наибольшее количество нанокристаллической структуры.

Остальные режимы включали ХП, ТП и промежуточный отжиг (ПО) при 400°С, 1 ч в разных сочетаниях. Учитывая, что повышение температуры прокатки до 150°С неизбежно приведет к уменьшению степени аморфизации сплава Ti-50.26 ат.%Ni, для других режимов ТМО истинная деформация прокаткой составляла наибольшую из диапазона исследуемых (e=1.2) с целью дальнейшего сравнения полученных свойств с контрольной обработкой ХП(1.2).

-Режим 4, ХП *e*=1 (5 проходов) + ПО + ХП *e*=0.2 (один проход): **ХП(1)+ПО+ХП(0.2)**;

-Режим 5, XП *e*=1 (5 проходов) + ПО + ТП *e*=0.2 (один проход): **ХП(1)+ПО+ТП(0.2**);

ТМО по таким режимам позволяет сформировать смешанную, частично аморфную и нанокристаллическую структуру на первом этапе обработки $X\Pi(e=1)$. Предполагалось, что последующий промежуточный отжиг при 400°С, 1 час приведет к нанокристаллизации аморфной фазы и росту зерен НКС и субзерен НСС, а дальнейшая $X\Pi/T\Pi$ со степенью накопленной деформации e=0.2, возможно, сформирует более благоприятную текстуру сплава Ti-50.26%Ni. Последний проход $X\Pi/T\Pi$ с e=0.2, возможно, приведет к уменьшению размера наносубзерна по сравнению с $X\Pi(1.0)$, а дополнительная тепловая энергия к уменьшению степени повреждаемости сплава в ходе ИПД по сравнению с $X\Pi(1.2)$.

-Режим 6, ТП e=1 (5 проходов) + ПО + ТП e=0.2 (один проход): **ТП(1)+ПО+ТП(0.2)**; Режим 7, ТП e=1.2 (6 проходов): **ТП(1.2**)

-Режим 7, ТП *e*=1.2 (6 проходов): **ТП(1.2)**.

Такие режимы ТМО позволят свести к минимуму повреждаемость сплава при ИПД, формирующей наноструктуру сплава и, возможно, получить благоприятную текстуру.

Промежуточный отжиг (ПО) и последеформационный отжиг (ПДО) проводили при 400 °C, 1 час в электрической печи (*PYRADIA*) с последующим охлаждением в воде.

№	Схема ТМО	Шаг 1	Шаг 2	Шаг З	Шаг 4
1	ХП(0.75)	ХΠ, е=0.75	ПДО 400 °С, 1 ч	-	-
2	ХП(1.02)	ХΠ, е=1	ПДО 400 °С,1 ч	-	-
3	ХП(1.2)	ХΠ, е=1.2	ПДО 400 °С,1 ч	-	-
4	ХП(1)+ПО+ХП(0.2)	ХΠ, е=1	ПО 400 °С, 1 ч	ХΠ, е=0.2	ПДО 400°С,1ч
5	ХΠ(1)+ПО+ТП(0.2)	ХΠ, е=1	ПО 400 °С, 1 ч	ТП, е=0.2	ПДО 400°С,1ч
6	$T\Pi(1)+\Pi O+T\Pi(0.2)$	ТП, е=1	ПО 400 °С, 1 ч	ТП, е=0.2	ПДО 400°С,1ч
7	ТП(1.2)	ТП, е=1.2	ПДО 400 °С, 1 ч	-	-

Таблица 1 – Обозначения и схемы обработок

Пруток сплава Ti-50.7 ат.%Ni подвергали холодному волочению в ЗАО «ПЦ МАТЭКС» (HTMO) без промежуточного подогрева до диаметра 0.3 мм (накопленная деформация составила e=0.6). Последеформационный отжиг осуществляли в интервале температур 350-700°C в течении 20 мин – 1 час. Варьирование режимов ПДО позволяет получить широкий спектр структурных состояний. Для формирования нанокристаллической структуры этого сплава проводили интенсивную пластическую деформацию (ИПД) прокаткой на лабораторном стане "*FENN*" с накопленной деформацией e=1.55 и последеформационный отжиг при 450°C, 10 ч.

Исследование структуры и субструктуры образцов при комнатной температуре проводили на *просвечивающих электронных микроскопах* "JEOL-2100" и "Tesla BS-540".

Металлографический анализ проводили на световых микроскопах "Union" и "Leica DMLM" с увеличением 50× – 600×, с целью исследования состояния поверхности образцов после ТМО и выявления краевых поверхностных трещин.

Методом дифференциальной сканирующей калориметрии (ДСК) на установке "Perkin Elmer" при скоростях нагрева и охлаждения 10°С/мин изучали последовательность и характеристические температуры мартенситных превращений сплава Ti-50.26 ат.%Ni после ТМО по разным режимам.

Рентгенографическое исследование образцов после шлифовки и химического стравливания наклепанного поверхностного слоя проводили на дифрактометрах "*PANalytical X'pert Pro*" и "*Ultima IV Rigaku*" в Си_{Ка} излучении при комнатной температуре и 150 °C.

Текстурный анализ В2-аустенита проводили с помощью рентгеновского дифрактометра ("*PANAlytical X'pert Pro*) в $Cu_{K\alpha}$ -излучении. Съемки проводили при температуре 100°С (выше A_{κ}). При анализе использовали методы прямых и обратных полюсных фигур, а также функцию распределения ориентировок.

Параметры решетки B2-аустенита определяли методом экстраполяции на $\theta=90^{\circ}$. Параметры решетки B19'-мартенсита рассчитывали, применяя метод наименьших квадратов отклонений расчетных значений от набора экспериментальных координат дифракционных линий. Кристаллографический ресурс обратимой деформации рассчитывали как максимальную деформацию решетки при мартенситном превращении (монокристалла аустенита в монокристалл мартенсита). Теоретический ресурс обратимой деформации в поликристаллическом состоянии рассчитывали с учетом текстуры B2-аустенита и в предположении 100% реализации наиболее благоприятного ориентационного варианта мартенсита в каждом зерне¹.

Экспериментальное определение максимального значения величины *реактивного* напряжения σ_r^{max} проводили на оригинальной испытательной установке в пределах полной наведенной деформации $\varepsilon_t = 6-9$ %. Цикл нагрев-охлаждение проводили в диапазоне от комнатной температуры до 200 °C.

¹ Автор выражает благодарность А.В. Коротицкому за предоставленную возможность использовать разработанные им методики и компьютерные программы расчета ресурса обратимой деформации.

Определение максимальной *обратимой деформации* ε_r^{max} и максимальной *полностью обратимой деформации* $\varepsilon_{r,t}^{max}$ проводили по двум схемам: (1) «деформация растяжением – разгрузка», используя установку «Instron 3360», в диапазоне полной наведенной деформации $\varepsilon_t = 7-11$ % с шагом 0.5-1 % при нагреве до 250°С и (2) через превращение B2 \rightarrow R \rightarrow B19' изгибом на цилиндрических оправках разного диаметра в диапазоне полной наведенной деформации $\varepsilon_t = 12-18$ % и последующим охлаждением до температуры -196°С, разгрузкой при этой температуре и последующим нагревом выше А_к.

Термомеханические усталостные испытания по схеме свободного восстановления формы проводили на установке "Enduratec ELF 3200" (Bose). Цикл «деформация растяжением – разгрузка» с деформацией $\varepsilon_t = 9\%$ в каждом цикле приводили при комнатной температуре, после чего образец нагревали до 100°С, измеряя величину обратимой деформации и охлаждали до комнатной температуры. Испытания проводили до разрушения образца. Термомеханические усталостные испытания по схеме генерация-релаксация *реактивного напряжения* σ_r проводили на оригинальной испытательной установке. Испытание включало: цикл «деформация растяжением – разгрузка» с наведенной деформацией $\varepsilon_t = 9\%$ в первом цикле при комнатной температуре, после чего образец жестко фиксировали в захватах (без возможности изменения продольных размеров) и нагревали до 200 °С с последующим охлаждением до комнатной температуры. Цикл «нагрев – заневоленного образца повторяли до его разрушения. Сверхупругое охлаждение» механоциклирование проводили на испытательной машине "MTS' MiniBionix 858" по схеме «деформация растяжением – разгрузка» при постоянной температуре (A_к+10°C) с деформацией 3% в каждом цикле. Испытания повторяли до разрушения.

В ГЛАВЕ 3 рассмотрены результаты исследований структуры и текстуры сплава Ti-50.26ат.%Ni, формирующихся в ходе термомеханической обработки. Рассчитаны параметры решеток B2-аустенита и B19'-мартенсита после TMO по всем режимам.

В *первом разделе* главы представлены результаты электронномикроскопического исследования, особенности формирования наноструктурного состояния в сплаве Ti-50.26at.%Ni после TMO по всем режимам.

Режим ХП(0.75), рисунок 1а, б. В этом случае после ПДО при 400°С, 1ч наблюдается смешанная наноструктура, включающая чередующиеся области НСС и НКС в количестве примерно 60% и 40%, соответственно. Субзерна НСС содержат высокую по сравнению с НКС плотность дислокаций. Области НСС и НКС не полностью однородны по структуре: в первых встречаются индивидуальные наноразмерные зерна, а во вторых – небольшие группы субзерен (рисунок 1а,б). Микродифракционные картины НКС состоят из точечных колец с довольно однородным распределением рефлексов. Дифракционные кольца от НСС состоят из относительно коротких, часто фрагментированных дуг – сгущений рефлексов, характерных для полигонизованной дислокационной субструктуры, и небольшого числа индивидуальных рефлексов от НКС между ними.

Режим XII (1.2), рисунок 1в. Повышение степени деформации при XII с e=0.75 до 1.2 приводит к интенсивному развитию НКС и увеличению доли аморфной структуры. Поэтому после ПДО при 400 °C, 1 ч, приводящего к нанокристаллизации аморфной структуры и росту зерен исходной НКС, на светлопольных и темнопольных изображениях наблюдается в основном НКС с размером зерен в пределах 15-70 нм. Судя по темнопольным изображениям, в небольшом количестве (в пределах 10-15 %) присутствует и НСС, идентифицируемая, как и в случае режима XII(0.75) в виде «светящихся» областей размером до 150 нм, состоящих из нескольких близко ориентированных (и потому светящихся одновременно) субзерен. Микродифракционные картины представляют собой типичные для НКС точечные кольца с довольно равномерным распределением отдельных точечных рефлексов по кольцу. Сгущения рефлексов, служащие признаком существования HCC, выражены слабо.

Режим XП(1)+ПО+XП(0.2), рисунок 1г. На светлопольных и темнопольных изображениях наблюдается в основном НКС, как и в случае режима XП(1.2), с такой же накопленной деформацией, но без ПО. При этом зерна НКС крупнее примерно в 1.5-2 раза, чем в случае XП(1.2). Это следует и из более «разреженного» расположения точечных рефлексов на кольце микроэлектроннограммы, чем в случае XП(1.2), полученной от того же объема материала. В целом интенсивность распределена по точечному кольцу электронограммы довольно равномерно, резких сгущений рефлексов нет, а явных областей с НСС на светлопольных и темнопольных изображениях мало. Следовательно, структуры после ТМО с одинаковой степенью накопленной деформации (e=1.2) при XП подобны и отличаются только размером зерна B2-аустенита, увеличившегося в конечном счете вследствие включения ПО в схему ТМО и соответствующего меньшего накопления дефектов решетки перед ПДО.

Режим XП(1)+ПО+ТП(0.2), рисунок 1д, е. Структура после ТМО по этому режиму по своему характеру занимает как бы промежуточное положение между структурами, формирующимися в результате ТМО по режимам XП(1)+ПО+XП(0.2) и TП(1)+ПО+TП(0.2) (последняя показана на рисунке 1ж). Но она все-таки ближе к первой: в основном это НКС, с соответствующей кольцевой точечной дифракционной картиной (рисунок 1д), но довольно много и НСС (конгломераты субзерен размером до 200 нм и закономерные сгущения рефлексов на кольцевой электронограмме) (рисунок 1е), хотя областей с НСС и заметно меньше, чем после ТМО по режиму TП(1)+ПО+ТП(0.2). Размер структурных элементов (зерен, субзерен) примерно такой же, как после XП(1)+ПО+XП(0.2), т.е., больше, чем после XП(1.2) без ПО, и распределение точечных рефлексов по дифракционному кольцу более разреженное.

Режим ТП(1)+ПО+ТП(0.2), рисунок 1ж. Судя по светлопольным и темнопольным изображениям, наблюдается в основном НСС, но довольно много и НКС. Зерна, субзерна и группировки субзерен (полигонизованные области) крупнее, чем в случае ХП(1.2). Внутри субзерен наблюдается повышенная плотность дислокаций. Особенности дифракционной картины подтверждают этот характер структуры: наблюдаются явные дугообразные сгущения интенсивности на дифракционных кольцах, характерные для полигонизованной дислокационной субструктуры. Такая структура В2-аустенита не отличается от структуры без ПО (рисунок 1з), режим ТП(1.2).

Таким образом, электронномикроскопическое исследование выявило следующие закономерности формирования структуры B2-фазы сплава Ti-50.26%Ni:

(1) Чем больше вклад ХП, тем больше доля НКС по сравнению с НСС и ниже средняя плотность дислокаций после ПДО при 400 °С, 1 ч;

(2) Чем больше вклад ТП, тем больше доля НСС по сравнению с НКС и тем крупнее зерна, субзерна и полигонизованные области с НСС;

(3) Включение в схему ТМО промежуточного отжига при 400 °C, 1 ч приводит к укрупнению структуры: увеличению размера зерен НКС и субзерен НСС.

Во *втором разделе* главы представлены результаты металлографического анализа образцов сплава Ti-50.26 ат.%Ni после TMO по всем режимам. Проведена оценка средней длины поверхностных трещин и их концентрации.

Средняя длина поверхностных трещин после обработки по режиму XП(0.75) составляет 16±2 мкм и концентрация трещин 19±1 мм⁻¹. С увеличением степени XП длина трещин резко возрастает до 24±4 мкм при e=1.0 и до 25±4 при e=1.2, а концентрация трещин до 22±1 мм⁻¹. Включение в режим ТМО промежуточного отжига, XП(1)+ПО+XП(0.2), приводит к уменьшению длины трещин до 19±4 мкм и концентрации до 21±2 мм⁻¹. Дальнейшее увеличение вводимой тепловой энергии в процесс ТМО за счет дополнительной теплой прокатки и промежуточного отжига, например, XП(1)+ПО+ТП(0.2) и ТП(1)+ПО+ТП(0.2) ведет к еще большему уменьшению их длины: до 17±2 мкм и до 16±3

мкм, и концентрации до 19±2 мм⁻¹, а при полностью теплой деформации, ТП(1.2), до концентрации 18±1 мм⁻¹.

Рисунок 1 – Структуры сплава Ti-50.26%Ni после TMO по различным режимам включающим: a-б) XП(0.75); в) XП(1.2); г) XП(1)+ПО+ХП(0.2); д-е) XП(1)+ПО+ТП(0.2); ж)ТП(1)+ПО+ТП(0.2) и з) ТП(1.2). Слева направо: светлопольное изображение, темнопольное изображение, вставка - микродифракция

В третьем разделе главы представлены результаты рентгенографического анализа сплава после ТМО по всем режимам. Главная задача данного исследования заключалась в

определении угловых координат рентгеновских линий и расчете параметров решетки В19'мартенсита и В2-аустенита. Как показали расчеты, параметры решетки В19'-мартенсита после разных обработок в пределах погрешности не различаются (таблица 2). Кроме того, их отличие от соответствующих параметров закаленного мартенсита наблюдается в те же стороны и на такие же величины, что и в предыдущих исследованиях в случае образования мартенсита из нанокристаллического или полигонизованного аустенита.

Обработка	Параметры р	Параметры решетки мартенсита				
-	<i>a</i> , Å	6, Å	<i>c</i> , Å	β , град	- mono y · · ·	
Закалка 700°С	2.8969	4.1228	4.6435	97.47	11.48 ± 0.06	
	± 0.0014	±0.0026	± 0.0012	± 0.08		
ХП(0.75) + ПДО (400°С,	2.8898	4.1195	4.6265	96.99	10.84±0.17	
1ч)	±0.012	± 0.0044	± 0.0035	±0.26		
$X\Pi(1)+\Pi O+X\Pi(0.2)+$	2.8860	4.122	4.6311	97.16	10.88±0.16	
ПДО (400°С, 1ч)	± 0.0106	± 0.0044	± 0.0034	±0.23		
$X\Pi(1)+\Pi O+T\Pi(0.2)+$	2.8827	4.1187	4.622	96.88	10.5±0.13	
ПДО (400°С, 1ч)	± 0.0075	± 0.0045	± 0.0038	±0.17		
ТП(1)+ПО+ТП(0.2)+ ПДО	2.8878	4.1249	4.6268	96.83	10.71±0.14	
(400°С, 1ч)	± 0.0082	± 0.0045	± 0.0037	±0.20		

Таблица 2 – Параметры решетки мартенсита и максимальная деформация решетки при мартенситном превращении сплава Ti-50.26%Ni (съемка при T_{комн})

В четвертом разделе главы представлены результаты текстурного анализа сплавов после ТМО по всем режимам с использованием методов прямых и обратных полюсных фигур и функции распределения ориентировок. Функция распределения ориентировок и обратная полюсная фигура вычислены на основе трех прямых полюсных фигур: (110), (200) и (211), - с помощью компьютерной программы текстурного анализа «*X'pert texture*». Компоненты текстуры (hkl)[uvw] во всех случаях могут быть качественно определены в соответствии с величиной плотности их ориентаций (ФРО), используя соотношения между эйлеровскими углами { φ 1, φ , φ 2} и (hkl)[uvw] согласно уравнениям Бурнге.

При $\varphi 2=0^{\circ}$ (или 90°) и $\Phi=90^{\circ}$ вычисленная основная компонента текстуры точно соответствует плоскости {100} и с небольшим отклонением - направлению [011], рисунок 2.

Рисунок 2 – Сечения ФРО при ф2=0 и 90° для всех режимов ТМО

Из анализа обратных полюсных фигур следует, что полюс направления [011]В2 располагается весьма близко к максимумам ОПФ. Таким образом, основная компонента текстуры аустенита после всех режимов ТМО сплава Ti-50.26Ni соответствует {100}<011>. На рисунке 2 указана величина ФРО (плотность ориентации - *I*) для текстурной компоненты {100}<011> в зависимости от режима ТМО. Из рисунка 2 следует, что текстурная компонента {100}<110>_{B2} после повышения логарифмической деформации до *e*=1.2 ослабляется. Объяснение этого наблюдения заключается в следующем: при XП, *e*=1.2 количество аморфной фазы больше, чем после XП, *e*=0.75 и 1.0 или режимов ТМО, включающих ТП и ПО. При нанокристаллизации аморфной фазы возникающие зерна имеют произвольную ориентировку, вследствие чего наблюдается снижение ориентационной плотности после XП(1.2).

Рисунок 3 – Обратные полюсные фигуры, соответствующие направлению нормали (HH) к плоскости прокатки и направлению прокатки (HII): (a) ХП(0.75); (б) ХП(1.0); (в) ХП(1.2); (г) ХП(1)+ПО+ХП(0.2); (д) ХП(1)+ПО+ТП(0.2); (е) ТП(1)+ПО+ТП(0.2). О – положение полюса [011]В2, х – положение максимума ОПФ

В ГЛАВЕ 4 представлены результаты расчета кристаллографического ресурса обратимой деформации СПФ Ti-50.26%Ni после TMO по всем режимам. Теоретический (кристаллографический) ресурс обратимой деформации СПФ определяется максимальной деформацией кристаллической решетки при мартенситном превращении. С учетом различных особенностей структуры и ее изменений при мартенситном превращении используют разные методы оценки ресурса обратимой деформации.

Теоретический расчет кристаллографического ресурса обратимой деформации в приближении монокристалла (превращение «монокристалл аустенита \leftrightarrow монокристалл мартенсита»), проводимый непосредственно по параметрам решетки мартенсита и аустенита, дает наибольшую величину в случае образования мартенсита из рекристаллизованного аустенита при обычной закалке: $\varepsilon_{mono}^{max} = 11.48\%$ (таблица 2). Применение ТМО по разным режимам приводит к уменьшению теоретического ресурса, причём примерно в равной степени (см. таблица 2).

Проведенный текстурный анализ позволил оценить ресурс обратимой деформации поликристаллического сплава Ti-50.26%Ni после TMO по разным режимам с учетом

особенностей текстуры (таблица 3) тремя методами: (1) $\varepsilon_{poly}^{\max 3}$ с учетом относительной плотности ориентаций $R_{<hkl>}$ в направлениях <100>, <110> и <111>, рассчитанный из обратных полюсных фигур; (2) $\varepsilon_{poly}^{\max 2}$ с учетом полюсной плотности 12500 ориентировок в пределах стандартного стереографического треугольника простым усреднением; (3) $\varepsilon_{poly}^{\max 1}$ с учетом полюсной плотности 12500 ориентировок в пределах стандартного стереографического треугольника в пределах стандартного стереографического треугольника в пределах стандартного стереографического треугольника в предположении реализации наиболее благоприятного ориентационного варианта мартенсита в каждом зерне. Результаты расчетов представлены в таблице 3.

puee mitumbin pushbinin meroge						
Обработка	Рассчитанный ресурс обратимой деформации, %					
	${m {\cal E}}_{poly}^{\max 1}$	$\mathcal{E}_{poly}^{\max 2}$	$\mathcal{E}_{poly}^{\max 3}$			
Закалка 700 °С	10.56	9.26	-			
ХП(0.75)	10.14	9.03	7.47			
ХП(1.2)	10.24	9.17	7.24			
$X\Pi(1)+\Pi O+X\Pi(0.2)$	10.19	9.15	6.89			
$X\Pi(1)+\Pi O+T\Pi(0.2)$	9.78	8.68	7.40			
$T\Pi(1)+\Pi O+T\Pi(0.2)$	9.89	8.78	6.95			

Таблица 3- Ресурс обратимой деформации поликристаллического сплава Ti-50.26% Ni, рассчитанный разными методами.

Из анализа таблицы 3 вытекают следующие выводы:

(1) Величины ресурса обратимой деформации, рассчитанные с учетом текстуры поликристаллического аустенита разными методами, существенно различаются. Для разных режимов ТМО расчет по наиболее адекватному методу, учитывающему реализацию под напряжением в каждом зерне наиболее благоприятного ориентационного варианта мартенсита, дает $\varepsilon_{poly}^{\text{max1}}$ около 10%, простое усреднение ориентационных вариантов дает $\varepsilon_{poly}^{\text{max3}}$ около 9%, а учет только полюсных плотностей направлений <100>, <110> и <111> - $\varepsilon_{poly}^{\text{max3}}$ в пределах 6.89...7.47.

(2) Несмотря на различия в ориентационной плотности основной текстурной компоненты $\{100\}<110>_{B2}$ после ТМО по разным режимам, различия в теоретическом ресурсе обратимой деформации поликристалла (в пределах одного метода его расчета) невелики и не выходят за пределы погрешности.

В ГЛАВЕ 5 представлены результаты исследований статических функциональных свойств сплавов Ti-50.26%Ni и Ti-50.7%Ni после термомеханической обработки.

Главная решаемая задача *первого раздела* заключалась в определении максимальных функциональных свойств в зависимости от структуры и текстуры СПФ Ti-50.26%Ni и выявлении влияния различных факторов на их величины.

Испытания по схеме «генерация реактивных напряжений» образцов сплава Ті-50.26% Ni после предварительного нагружения с деформацией $\varepsilon_t=5\div9\%$ и разгрузкой до 10H показали, что наибольшая величина реактивного напряжения достигается при предварительно наведённой деформации сплава $\varepsilon_t=9\%$ после режимов XП(1.2) и XП(1)+ПО+ТП(0.2). Поэтому значение $\varepsilon_t=9\%$ было выбрано для дальнейших исследований величины σ_r^{max} после всех остальных режимов ТМО (рисунок 4).

Рисунок 4 – Кривые генерации-релаксации реактивного напряжения в зависимости от величины полной наводимой деформации для разных режимов ТМО

Таблица 4– Значения максимального реактивного напряжения, характеристики обратимой деформации и параметры диаграммы деформации-разгружения СПФ Ti-50.26 ат.%Ni в зависимости от режимов ТМО

N⁰	Режимы	$σ_r^{max}$, ΜΠα	\mathcal{E}_r^{\max} , %	$\mathcal{E}_{r,1}^{\max}$, %	$\sigma_{\phi},$ МПа	<i>σ_i</i> , МПа (при <i>ε_t</i> =10%)
1	ХП(0.75)	940±40	6.67±0.15	6.1	144±14	690±30
2	ХП(1.0)	990±30	-	-	-	-
3	ХП(1.2)	1170±50	8.00±0.32	8.0	238±12	860±50
4	$X\Pi(1)+\Pi O+X\Pi(0.2)$	1110±40	7.27±0.05	7.2	189±24	740±30
5	$X\Pi(1)+\Pi O+T\Pi(0.2)$	1030±30	7.37±0.12	7.3	178±28	705±35
6	$T\Pi(1)+\Pi O+T\Pi(0.2)$	940±30	7.32±0.04	7.3	170 ± 17	750±60

Наибольшая полная обратимая деформация $\varepsilon_r^{\max} = \varepsilon_r^{CV+\Im\Pi\Phi} = 8\%$ достигается в случае ТМО по режиму ХП(1.2). После ТМО по режимам, включающим комбинирование ХП, ПО и ТΠ с такой же накопленной деформацией *e*=1.2, т.е., $X\Pi(1)+\Pi O+X\Pi(0.2),$ XП(1)+ПО+ТП(0.2) и ТП(1)+ПО+ТП(0.2), эти величины $\varepsilon_r^{\text{max}}$ ниже и составляют около 7.3 %. После ТМО по режиму XП(0.75) величина $\varepsilon_r^{\text{max}}$ наименьшая (6.7 %). Максимальная полностью обратимая деформация $\varepsilon_{r,1}^{\max}$ – ведет себя подобным образом. Причем после всех режимов ТМО с накопленной деформацией e=1.2 она совпадает в пределах погрешности с $\varepsilon_r^{\text{max}}$, а для режима XП(0.75) – заметно меньше $\varepsilon_r^{\text{max}}$ (таблица 4).

Сравнение экспериментальных величин обратимой деформации с предсказанными теоретически показывает следующее (рисунок 5):

-экспериментально измеренная максимальная обратимая деформация \mathcal{E}_{r}^{\max} в трех случаях из пяти превышает рассчитанный ресурс $\mathcal{E}_{poly}^{\max 3}$, что свидетельствует о неадекватности оценки ресурса только по трем основным ориентировкам;

Рисунок 5 - Сравнение экспериментальных величин обратимой деформации (Таблица 4), ее теоретического ресурса, рассчитанного разными методами (Таблица 3), и реактивного напряжения (Таблица 4)

величины теоретического pecypca обратимой деформации, рассчитанные двумя другими методами, $\varepsilon_{poly}^{\max 1}$ и $\varepsilon_{poly}^{\max 2}$, везде больше экспериментальных максимальных величин обратимой деформации \mathcal{E}_r^{\max} . Поскольку мартенситное превращение наводящей при ЭΠΦ деформации происходит под воздействием внешнего растягивающего напряжения, то В наиболее качестве адекватной теоретической оценки pecypca обратимой деформации поликристаллического материала следует принять $\varepsilon_{poly}^{\max 1}$.

Степень реализации pecypca $\varepsilon_r^{\max} / \varepsilon_{poly}^{\max 1}$ деформации обратимой наибольшая после ТМО по режиму XΠ(1.2), приводящему к наибольшего формированию количества НКС с наиболее мелким зерном (рисунок 1в). В случае наименьшей накопленной деформации XП(0.75)) прокатке (режим при отношение $\mathcal{E}_r^{\max}/\mathcal{E}_{poly}^{\max 1}$ наименьшее, а в

остальных случаях оно имеет промежуточную величину. В таком же соотношении находятся величины максимальной полностью обратимой деформации $\varepsilon_{r,1}^{\max}$. После ТМО по всем режимам, кроме ХП(0.75), величины $\varepsilon_{r,1}^{\max}$ и ε_{r}^{\max} для данного режима в пределах погрешности не различаются, а после ХП(0.75) $\varepsilon_{r,1}^{\max}$ меньше, чем ε_{r}^{\max} .

Сравнительный анализ особенностей характеристик свободного формовосстановления, силовых характеристик (фазовый предел текучести σ_{ϕ} и напряжение σ_i , достигаемое при $\varepsilon_i = 10\%$) и структуры СПФ Ті-50.26% Ni позволяет непротиворечиво объяснить наблюдаемую закономерность изменения максимальной обратимой деформации в зависимости от режима ТМО и оценить роль структурного и текстурного факторов в реализации ее ресурса (таблица 4). Сравнение этих параметров после ТМО по разным режимам показывает, что всем режимам, включающим ПО и ТП, отвечают близкие значения σ_{ϕ} и σ_i . Величины σ_{ϕ} и σ_i отличаются от этого уровня: в большую сторону для режима ХП(1.2), в меньшую для режима ХП(0.75).

Наибольшее структурное упрочнение в сочетании с наиболее благоприятной (судя по наибольшему теоретическому ресурсу обратимой деформации $\varepsilon_{poly}^{max1}$, Таблица 3) текстурой в случае ТМО по режиму ХП(1.2), приводящему к образованию преимущественно НКС в В2-аустенита, обеспечивает наибольшие величины обратимой деформации ($\varepsilon_r^{max} = 8\%$), степени реализации ее теоретического ресурса, рассчитанного с учетом реальной текстуры ($\varepsilon_r^{max}/\varepsilon_{poly}^{max1}=0.79$), и максимального реактивного напряжения $\sigma_r^{max}=1170$ МПа.

Наименьшее структурное упрочнение, а следовательно, и наименьшая разность между дислокационным и фазовым пределами текучести, в случае ТМО по режиму ХП(0.75), приводящему к образованию смеси НКС+НСС также в сочетании с благоприятной текстурой

(Таблица 3), обеспечивает и наименьшее значение $\varepsilon_r^{\text{max}}$, которое в свою очередь значительно уступает теоретическому ресурсу, рассчитанному с учетом текстуры B2-аустенита ($\varepsilon_r^{\text{max}} / \varepsilon_{poly}^{\text{max}1} = 0.66$). Максимальное реактивное напряжение после данной обработки также понижено: $\sigma_r^{\text{max}} = 940$ МПа.

Промежуточное по величине структурное упрочнение в случае ТМО, включающей ТП и ПО и приводящей к формированию смешанной структуры с более крупными нанозернами/наносубзернами, но с большей плотностью дислокаций в НСС, в сочетании с менее благоприятной текстурой обеспечивает промежуточные значения $\varepsilon_r^{max} / \varepsilon_{poly}^{max1} = 0.72 - 0.75$ и $\sigma_r^{max} = 940 - 1100$ МПа.

Из этого анализа следует, что реализуемая максимальная обратимая деформация в рассмотренных случаях определяется в основном структурным состоянием B2-аустенита. Действительно, НКС, обеспечивающая наибольшую разность между дислокационным и фазовым пределами текучести, обеспечивает и наиболее высокие обратимую деформацию и степень восстановления формы (режим XII(1.2). В то же время смешанная HC+HK структура, образовавшаяся в результате ТМО по режиму XII(0.75), при наименьшей разности между дислокационным и фазовым пределами текучести и таком же теоретическом ресурсе, обеспечивает наиболее низкие $\varepsilon_r^{\text{max}}$ и степень восстановления формы $\varepsilon_{\text{к}}/\varepsilon_{\text{i}}$.

В целом на обратимую деформацию при ТМО влияют два основных фактора.

Первый, «текстурный», фактор (ФРО) определяет теоретический ресурс обратимой деформации. Роль второго, «структурного», фактора (дефектности решетки, определяющей структурное упрочнение, а главное, разность между дислокационным и фазовым пределами текучести) двоякая. В первую очередь он определяет степень реализации этого теоретического ресурса $\mathcal{E}_r^{\max}/\mathcal{E}_{poly}^{\max l}$ (а также максимальную полностью обратимую деформацию $\mathcal{E}_{r,l}^{\max}$, степень восстановления формы $\mathcal{E}_r/\mathcal{E}_l$). В меньшей мере он влияет и на саму величину теоретического ресурса, изменяя ее вследствие изменения параметров решетки мартенсита. Таким образом, для реализации предельно высокой обратимой деформации следует стремиться к формированию НКС в сочетании с сильной текстурой, ФРО которой обеспечивает максимальную деформацию превращения в направлении растяжения.

Во *втором разделе* исследовали особенности процессов формовосстановления в условиях реализации аномально высокой обратимой деформации в СПФ Ti-50.7%Ni.

В «заникеленном» сплаве Ti-50.7%Ni в отличие от околоэквиатомных сплавов в процессе ПДО в интервале температур 350-500°С наряду с субструктурным разупрочнением протекают процессы дисперсионного упрочнения. Они вносят определенное влияние на характеристики формовосстановления.

Наведение ЭПФ и ОЭПФ осуществляли изгибом по схеме, предусматривающей деформирование в исходном состоянии В2-фазы с реализацией последовательности мартенситных превращений В2 \rightarrow R \rightarrow В19' и последующее постепенное охлаждение в нагруженном состоянии до температуры –196 °C. Нагрев образцов после снятия нагрузки проводили до 90°C.

Последеформационный отжиг в случае исходной умеренной деформации, е=0.6, сопровождается следующими структурными изменениями: ПДО при 350 °C, 20 мин формирует развитую дислокационную субструктуру возврата с признаками начальной стадии полигонизации; после ПДО при 430 °C, 20 мин наблюдается полигонизованнная субструктура аустенита с размером субзерен ≤ 70 нм, т.е. наносубзеренная структура; после ПДО при 500 °C, 20 мин субзерна вырастают до размера ≤ 200 нм, выходя из нанометрического размерного диапазона; после ПДО при 600 °C, 20 мин наблюдается смешанная структура аустенита: полигонизованная субструктура И частично рекристаллизованная структура; режим ПДО 600 °C, 1 ч приводит к формированию полностью рекристаллизованной структуры аустенита с размером зерна ≤ 5 мкм; наконец, после ПДО при 700 °C, 20 мин зерна рекристаллизованной структуры вырастают до размера ≤ 10 мкм. В случае исходной ИПД (*e*=1.55) ПДО при температуре 450°C, 10 ч формирует нанокристаллическую структуру в B2-аустените со средним размером зерен около 100 нм.

Закономерность изменения обратимой деформации ЭПФ ε_r характеризуется ее большим ростом практически во всех структурных состояниях с увеличением полной наводимой деформации ε_t в диапазоне от 12 до 18%.

При этом наименьшие значения обратимой деформации по механизму эффекта памяти формы $\varepsilon_r^{\Im D \Phi}$ и наибольшая величина условно упругой (включающей сверхупругую) отдачи ε_{el} во всем исследованном диапазоне ε_t наблюдаются в сплаве с наносубзеренной полигонизованной субструктурой (ПДО при 430 °C, 20 мин). При максимальном значении ε_r =18% обратимая деформация ЭПФ ε_r после дорекристаллизационного ПДО (350 °C, 20 мин; 430 °C, 20 мин; 500 °C, 20 мин) весьма высокая, сопоставимая с ее теоретическим монокристальным ресурсом (таблица 5). Отметим, что при этих температурах 350-500°С протекают процессы старения, причем более интенсивно при T=430°С. Следствием старения инициирование образования R-фазы и поэтому облегчение протекания является мартенситных превращений. По-видимому, высокий уровень ε_r при $\varepsilon_t = 18\%$, обеспечивается за счет воздействия мельчайших когерентных частиц фазы Ti₃Ni₄, выделяющихся при старении. Они создают дополнительные ориентированные поля напряжений в матрице, а низкое положение интервала М_н-М_к обеспечивает большой вклад в полную обратимую деформацию эффекта сверхупругости, в результате чего ε_{el} оказывается наибольшей и, сопоставимой со случаем чистой НКС, когда *ε*_{el} достигает 9%.

ТМО	$\varepsilon_t, \%$	$\varepsilon_i, \%$	$\varepsilon_{el}, \%$	$\varepsilon_r^{\ \Im\Pi\Phi},\%$	$\mathcal{E}_f, \%$
350°С – 20 мин	17.9	12.0	5.9	11,9	0.1
430°С – 20 мин	17.9	10.0	7.9	9.9	0.1
500°С – 20 мин	17.9	11.1	6.8	10.9	0.2
600°С – 20 мин	17.9	15.8	2.1	13.8	2.0
600°С – 1 час	17.9	17.7	0.2	16.6	1.0
700°С – 20 мин	17.9	16.7	1.2	11.7	5.0

Таблица 5 – Функциональные характеристики формовосстановления сплава Ti-50.7 ат.%Ni в результате ПДО после умеренной деформации (e=0.6) при $\varepsilon_t = 18\%$

Замена развитой полигонизованной субструктуры мелкозернистой структурой приводит к подъему интервала $M_{\rm H}$ - $M_{\rm K}$ и уменьшению дислокационного предела текучести, что приводит к увеличению вклада ЭПФ в обратимую деформацию и соответствующему росту ε_r при резком уменьшении ε_{el} . Получаемая в результате ПДО при 600 °C, 1 ч полностью рекристаллизованная структура аустенита с размером зерна ≤ 5 мкм обеспечивает максимальное значение обратимой деформации ЭПФ $\varepsilon_r^{\mathcal{Э}\Pi\Phi}$ =16.6 %. Такая величина обратимой деформации ЭПФ высокой, она в 1.5 раза превосходит теоретический (кристаллографический) ресурс деформации решетки при мартенситном превращении в сплаве Ti-50.7 ат.%Ni. Увеличение же размера рекристаллизованного зерна приблизительно в два раза (до ≤ 10 мкм после ПДО при 700 °C, 20 мин) приводит к уменьшению ε_r до «нормального» уровня, вследствие дальнейшего уменьшения Дислокационного предела текучести и развитием пластической деформации при наведении ЭПФ.

В *третьем разделе* описано применение разработанных режимов ТМО были в технологической цепочке изготовления самофиксирующихся скоб для сшивания ран век, действующих на основе ЭПФ и ОЭПФ.

В четвертом разделе представлены результаты динамических усталостных испытаний сплава Ti-50.26%Ni после всех режимов TMO по трем схемам: свободное восстановление формы, генерация-релаксация реактивного напряжения и сверхупругое механоциклирование.

Схема свободного восстановления формы

Схема свободного восстановления формы позволяет проследить особенность изменения обратимой деформации ε_r , реализуемой сплавом при нагреве до 100°С после деформации $\varepsilon_t = 9\%$ и разгрузки, ее стабильность (деградацию $\Delta \varepsilon_r$) и число циклов до разрушения N_f (таблица 6).

Таблица 6 – Результаты испытаний по схеме свободного восстановления формы: обратимая деформация в первом цикле ε_I (%), степень деградации обратимой деформации $\Delta \varepsilon_r$ (%) и число циклов до разрушения N_f

No	Обработка	$\varepsilon_l, (\%)$	$\Delta \varepsilon_r$, (%)	N_f
1	ХП(0.75)	5.6±0.3	11.2±2.8	7770±550
3	ХП(1.2)	5.3±0.1	2.4±1.3	4020±1650
4	$X\Pi(1)+\Pi O+X\Pi(0.2)$	5.6±0.1	6.2±1.4	5040±600
5	ХП(1)+ПО+ТП(0.2)	5.6±0.1	7.3±0.8	6550±1310
6	ТП(1)+ПО+ТП(0.2)	5.5±0.1	6.0±1.4	6300±1200

Обратимая деформация ε_r в 1-м цикле оказывается одинаковой (около 5.5 %) в пределах погрешности измерения после ТМО по всем режимам. Деградация величины обратимой деформации $\Delta \varepsilon_r$ при циклировании, определенная как относительное изменение ε_r между первым и 500-м циклами, увеличивается с уменьшением степени исходной деформации от e=1.2 до 0.75 и при включении ТП и ПО в схему ТМО. В случае ХП(0.75) деградация обратимой деформации максимальна, а после ХП(1.2) минимальна (таблица 6).

Число циклов до разрушения при увеличении степени деформации уменьшается и после контрольной обработки XП(1.2) долговечность образца наименьшая. Она заметно повышается после ТМО, включающей ТП и ПО. Самая большая долговечность в случае накопленной деформации e=1.2 наблюдается после XП(1)+ПО+ТП(0.2) и ТП(1)+ПО+ТП(0.2), а также и после деформации XП(0.75) (таблица 6).

Схема генерации-релаксации реактивного напряжения

Испытание по схеме генерации-релаксации реактивного напряжения позволило определить долговечность сплава после ТМО по различным режимам, а также величину реактивного напряжения в первом цикле σ_r^1 и степень ее деградации при циклировании $\Delta \sigma_r$ (таблица 7). Результаты испытаний с деформацией в первом цикле $\varepsilon_t=9\%$ и дальнейшее термоциклирование в интервале температур от комнатной до 200°С показали, что деградация реактивного напряжения после ТМО по режиму XП(1.2) наименьшая (17%), а после XП(0.75) – наибольшая (25%). Остальные режимы ТМО занимают промежуточные позиции по этому показателю функциональной стабильности.

В то же время после XП(e=0.75) долговечность сплава самая высокая по сравнению с другими режимами ТМО, включающими накопленную деформацию e=1.2. Наименьшая долговечность при наведенной деформации e=1.2 наблюдается после ТМО с XП(e=1.2), 780 цикла. После ТМО с ТП, XП+ТП и ПО она в 2-2.5 раза выше, чем в случае XП(1.2). Т.е., долговечность повышается с повышением количества тепловой энергии, введенной в ходе ТМО, как и в случае испытаний на свободное восстановление формы. Однако в процессе циклирования реактивное напряжения после этих обработок снижается сильнее, чем после XП(e=1.2).

110111	anpartennik, Bor(70) n' meno dinalob de puspymennik rej						
N⁰	Обработка	σ_r^{l} , (MPa)	$\Delta\sigma_r$, (%)	N_f			
1	ХП(0.75)	940±40	25±1	3870±700			
2	ХП(1.0)	990±30	24±2	1520±470			
3	ХП(1.2)	1170±50	17±2	780±150			
4	$X\Pi(1)+\Pi O+X\Pi(0.2)$	1110±40	20±3	1370±340			
5	ХП(1)+ПО+ТП(0.2)	1030±30	22±2	1820±290			
6	ТΠ(1)+ΠО+ΤΠ(0.2)	940±30	24±1	2030±200			

Таблица 7 – Результаты испытаний по схеме генерация-релаксация реактивного напряжения: реактивное напряжение в первом цикле σ_r^l (МПа), степень деградация реактивного напряжения. $\Delta \sigma_r$ (%) и число циклов до разрушения N_f

Схема сверхупругого механоциклирования

Циклирование при температуре $A_{\kappa}+10^{\circ}$ C с деформацией 3% в каждом цикле позволило выявить особенности изменения максимального значения фазового предела текучести σ_{ϕ}^{l} , его стабильность (деградацию $\Delta \sigma_{\phi}$) и число циклов до разрушения N_{f} (таблица 8).

Максимальное среднее число циклов до разрушения N_f =2940 наблюдается после ТМО по режиму XП(1)+ПО+ТП(0.2). Более низкое среднее число циклов до разрушения N_f =2440, но при этом и максимальная средняя накопленная необратимая деформация к 1000-му циклу ε_{1000} =2.5 %, наблюдается после ТМО по режиму XП(0.75). Значительно ниже эти показатели после ТМО по режиму XП(1)+ПО+XП(0.2) (N_f =1710 и ε_{1000} =1%). Далее идет XП(1.2) с количеством циклов до разрушения N_f =1680 и наименьшей ε_{1000} =0.6 %. Наименьшую долговечность N_f =1360 показали образцы после ТМО по режиму TП(1)+ПО+ТП(0.2) при умеренной накопленной необратимой деформации 1.4 %.

Таблица 8 – Результаты испытаний по схеме сверхупругого механоциклирования сплава Ті-50.26% Ni: фазовый предел текучести в первом цикле σ_{ϕ}^{l} (МПа); степень деградации фазового предела текучести $\Delta \sigma_{\phi}$ (%); необратимая деформация накопленная к 1000-му циклу ε_{1000} (%) и число циклов до разрушения N_f

№	Обработка	σ_{ϕ}^{I} , (MPa)	$\Delta \sigma_{\phi}, (\%)$	E1000,%	N_f
маршрута					
1	ХП(0.75)	480±22	54±2	2.5±0.1	2440±260
2	ХП(1.0)	560±10	50±6	2.5±0.1	1900±370
3	ХП(1.2)	580±30	41±3	0.6±0.1	1680±50
4	ХП(1)+ПО+ХП(0.2)	550±40	45±2	1.0±0.1	1710±190
5	ХП(1)+ПО+ТП(0.2)	520±50	53±5	2.2±0.5	2940±380
6	ТП(1)+ПО+ТП(0.2)	560±30	53±2	1.4±0.2	1360±80

В первом цикле испытания фазовый предел текучести $\sigma_{\phi}^{\ l}$ одинаков для всех маршрутов ТМО с e=1.2 в пределах доверительного интервала. В ходе последующего механоциклирования σ_{ϕ} уменьшается. Однако после ТМО по режиму ХП(0.75) $\sigma_{\phi}^{\ l}$ наименьший (480 МПа). Наибольшая стабильность σ_{ϕ} наблюдается после ХП(1.2), степень деградации к 1000 циклу $\Delta \sigma_{\phi} = 41$ %, при низкой долговечности (1680 циклов). Наибольшее снижение σ_{ϕ} наблюдается после ХП(0.75), 54 %, при большой долговечности (2440 циклов). Однако образец после ТП(1)+ПО+ТП(0.2) показал также высокую деградацию (53%) при минимальной долговечности (1360 цикла).

Рисунок 6 - Сопоставление характеристик микротрещин, наведенных в процессе ТМО по разным режимам (а), и усталостных функциональных свойств, полученных при испытаниях по разным схемам: (б) свободное восстановление формы, (в) генерация-релаксация реактивного напряжения, и (г) сверхупругое механоциклирование

С результатами, полученными при динамических испытаниях, хорошо коррелируют закономерности изменения характеристик трещинообразования. Так, при суммарной накопленной при ТМО истинной деформации e=1.2, ХП(1.2) наблюдается наибольшая дефектность краев наноструктурного образца, которой соответствует наименьшая долговечность, а при включении ТП и ПО, а также при уменьшении e от 1.2 до 0.75 дефектность образцов уменьшается, а число циклов до разрушения увеличивается (рисунок 6).

Выводы

1. Закономерность формирования структуры B2-аустенита сплава Ti-50.26 ат.%Ni в результате TMO по режимам, включающим холодную и теплую (150°C) прокатку с накопленной деформацией e=1.2 и промежуточный отжиг (400°C, 1 ч), в зависимости от вклада тепловой энергии заключается в том, что чем большее количество тепловой энергии включено в процесс TMO, тем больше доля наносубзеренной структуры по сравнению с нанокристаллической; размер зерен в нанокристаллической структуре, размер субзерен в наносубзеренной структуре и размер полигонизованных областей с наносубзеренной структурой, сформированных в ходе последеформационного отжига при 400°C, 1 ч.

2. Металлографическое исследование выявляет краевые поверхностные микротрещины, концентрация и глубина которых увеличивается с ростом степени XII с e=0.75 до e=1.2 в 1.5 раза. С увеличением вклада тепловой энергии в процессе ТМО с накопленной деформацией e=1.2 после ТМО по режиму XII(e=1)+IIO+TII(e=0.2) происходит уменьшение размера микротрещин в 1.5 раза по сравнению с XII(e=1.2).

3. Основная компонента текстуры B2-аустенита сплава Ti-50.26 ат.%Ni после TMO по всем режимам близка к $\{100\}<110>_{B2}$. Относительная полюсная плотность благоприятных ориентаций <110> и <111> максимальна, а неблагоприятной <100> минимальна после TMO по режиму XII(1)+IIO+TII(0.2). Отсутствие усиления текстуры аустенита после TMO по режиму XII(1.2) объясняется большей долей произвольно ориентированных зерен аустенита, образовавшихся при нанокристаллизации аморфной структуры в ходе последеформационного отжига.

4. Оценка ресурса обратимой деформации, достаточно полно учитывающая распределение ориентировок в аустените в текстурованном поликристалле при условии реализации только наиболее благоприятных ориентационных вариантов мартенсита, для сплава Ti-50.26 ат.%Ni после TMO по всем режимам дает величину ресурса не менее 9.7%.

Уменьшение степени деформации при XП с e=1.2 до 0.75 так же, как и включение в схему ТМО теплой прокатки и промежуточного отжига, приводит к уменьшению теоретической величины и степени реализации ресурса обратимой деформации. Наибольшая величина обратимой деформации, $\varepsilon_r^{\max} = 8\%$, наблюдается после ТМО по режиму XП(1.2), обеспечивающему формирование в основном нанокристаллической структуры в B2-аустените, а наименьшая (6.7%) - после XП(0.75), формирующего смесь наносубзеренной и нанокристаллической структур. После ТМО по остальным режимам наблюдаются промежуточные значения ε_r^{\max} . В таком же соотношении находятся значения степени реализации теоретического ресурса обратимой деформации $\varepsilon_r^{\max}/\varepsilon_{poly}^{\max}$ и максимальной полностью обратимой деформации $\varepsilon_{r,I}^{max}$.

5. Максимальное реактивное напряжение σ_r^{max} и напряжение σ_i , (соответствующее сопротивлению деформации при растяжении на 10%), а также сам дислокационный предел текучести, характеризующий уровень упрочнения сплава Ti-50.26%Ni, наибольшие в случае TMO по режиму XII(1.2), наименьшие в случае XII(0.75) и промежуточные после TMO по остальным режимам.

23

6. На величину и степень реализации ресурса обратимой деформации в поликристаллическом сплаве, по сравнению с его реализацией в благоприятно ориентированном бездефектном монокристалле Ti-Ni, влияют два основных фактора: «текстурный» и «структурный». «Текстурный» служит мерой несогласованности величин деформации внутри соседних зерен и поэтому определяет теоретический ресурс обратимой деформации $\varepsilon_{poly}^{\max 1}$. Роль «структурного» фактора (дефектности решетки) заключается в определении разности между дислокационным и фазовым пределами текучести. Поэтому в первую очередь он определяет степень реализации максимальной полностью обратимой деформации $\varepsilon_{r,1}^{\max}$ по сравнению с теоретическим ресурсом обратимой деформации. Кроме того, он влияет и на саму величину теоретического ресурса через изменение параметров решетки мартенсита. В случае образования наноструктуры сплава Ti-50.26%Ni, особенно преимущественного формирования нанокристаллической структуры, вклад структурного фактора значительно выше текстурного.

7. В условиях, обеспечивающих реализацию аномально высокой обратимой деформации. превышающей ee кристаллографический pecypc при $B2 \rightarrow R \rightarrow B19'$ превращении в сплаве Ti-50.7 ат.%Ni, восстановление формы происходит по механизмам сверхупругого возврата и эффекта памяти формы. Вклад сверхупругого возврата в полную обратимую деформацию достигает 6-9% в случае нанокристаллической и наносубзеренной структур В2-аустенита, когда интервал М_н-М_к значительно ниже температуры деформации, наводящей эффект памяти формы, а дислокационный предел текучести наиболее высокий. Вклад эффекта памяти формы в полную обратимую деформацию максимален и составляет 16.6 % в случае менее упрочненной мелкозернистой (≤5 мкм) рекристаллизованной структуры аустенита и интервала М_н-М_к вблизи температуры наводящей ЭПФ деформации.

8. Наибольшая долговечность при усталостных термомеханических и механических испытаниях функциональных свойств сплава Ti-50.26 ат.%Ni по разным схемам наблюдается в случае включения теплой деформации и промежуточного отжига в схему TMO с накопленной деформацией e=1.2, либо уменьшения степени холодной деформации с e=1.2 до e=0.75. Однако при этом несколько понижаются уровень функциональных свойств и их стабильность. Повышение долговечности в этом случае может быть результатом: (1) повышения сопротивления распространению трещин в наносубзеренной структуре по сравнению с нанокристаллической; (2) уменьшения размеров и концентрации трещин; (3) увеличения вклада благоприятной текстуры B2-аустенита типа $\{100\} < 110 > B2$.

Основные результаты диссертационной работы изложены в следующих публикациях:

В журналах, входящих в перечень рецензируемых российских и зарубежных научных журналов и изданий:

- 1. Е.П. Рыклина, С.Д. Прокошкин, А.Ю. Крейцберг. Возможности достижения аномально высоких параметров ЭПФ сплава Ti-50.7ат.%Ni в различных структурных состояниях аустенита. Известия РАН. Серия физическая, 2013, т. 77, №11, с. 1653-1663.
- 2. A. Kreitcberg, V. Brailovski, S. Prokoshkin, Y. Facchinello, K. Inaekyan, S. Dubinskiy. Microstructure and functional fatigue of nanostructured Ti-50.26at.%Ni alloy after thermomechanical treatment with warm rolling and intermediate annealing. Material Science and Engineering A, 2013, V. 562, p. 118-127.
- 3. E.P. Ryklina, S.D. Prokoshkin, A.Yu. Kreytsberg. Abnormally high recovery strain in Ti-Nibased shape memory alloys. Journal of Alloys and Compounds, 2013, V.577, Suppl. 1, p.S255-S258.
- 4. Е.П. Рыклина, И.Ю. Хмелевская, С.Д. Прокошкин, С.М. Дубинский, А.Ю. Крейцберг, В.А. Шереметьев. Получение, структура и свойства объемных наноструктурных и ультрамелкозернистых сплавов с памятью формы, 2010, Известия Вузов. Черная металлургия, № 11, с. 32-38.

5. A. Kreitcberg, V. Brailovski, S. Prokoshkin, K. Inaekyan. Influence of thermomechanical treatment on structure and crack propagation in nanostructured Ti-50.26 at.%Ni alloy. Metallography, microstructure, and analysis, 2014, V.3, №1, p. 46-57.

В прочих изданиях:

- A. Kreitcberg, V. Brailovski, S. Prokoshkin, K. Inaekyan, A. Korotitskiy, S. Dubinskiy. Nanostructures Formation and Improvement of the Functional Properties of Ti-50.26 at.%Ni Alloy by Warm Rolling and Intermediate Annealing Included in the TMT Schedule. Proc. Int. Conf. on Shape Memory and Superelastic Technologies (SMST-2013), 2013, p. 75-76.
- 7. E.P.Ryklina, I.Yu. Khmelevskaya, A.Yu. Kreytsberg. Elaboration, Structure and Properties of Nano-structured and Ultrafine-Structured Shape Memory Alloys. Exhibition-Seminar "Constructional Materials and Functional Coverings", Bratislava, 21-24 May 2012, pp. 14-21.
- А.Ю. Крейцберг, В. Браиловский, С.Д. Прокошкин, Я. Факкинелло, К. Инаекян, А.В. Коротицкий, С.М. Дубинский, «Применение теплой деформации в цикле ТМО наноструктурного сплава Ti-50.26 ат.%Ni для повышения его функциональных свойств». Сб. трудов VI Евразийской научно-практической конференции «Прочность неоднородных структур», ПРОСТ 2012, 17-19.04.2012, М.: НИТУ «МИСиС», 2012, с. 142.
- А.Ю. Крейцберг, В. Браиловский, С.Д. Прокошкин, А.В. Коротицкий. «Исследование влияния структуры и текстуры сплава Ti-50.26 ат.%Ni при включении в цикл ТМО теплой деформации на величину обратимой деформации». Сб. трудов международного симпозиума «Физика кристаллов 2013», 28.10-02.11.13, М.: НИТУ «МИСиС», 2013, с. 127.
- А.Ю. Крейцберг, В. Браиловский, С.Д. Прокошкин, К. Инаекян, А.В. Коротицкий. «Повышение функциональных свойств наноструктурного сплава Ti-50.26ат.%Ni путем включения в цикл ТМО теплой деформации. Сб. материалов V-Всероссийской конференции по наноматериалам. ISBN 978-5-4253-0605-0. Звенигород. 23-27.09.13, М.:ИМЕТ РАН, 2013, с. 238-239.
- 11. Е.П.Рыклина, С.Д.Прокошкин, А.А.Чернавина, А.Ю.Крейцберг. Наведение аномально высокой обратимой деформации в сплавах Ті-Ni памятью формы. Матер. 50 Международного симпозиума «Актуальные проблемы прочности», Часть 1, 27.09-01.10.2010, Витебск, Беларусь, Витебск: ВГТУ, 2010, с. 66-69.