Conordo

На правах рукописи

Комолова Ольга Александровна

МОДЕЛИРОВАНИЕ ВЗАИМОДЕЙСТВИЯ КОМПОНЕНТОВ ШЛАКОВОЙ И МЕТАЛЛИЧЕСКОЙ ФАЗ ПРИ ПРОИЗВОДСТВЕ СТАЛИ, РАЗРАБОТКА АЛГОРИТМОВ И ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ ДЛЯ ОПИСАНИЯ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ

Специальность 05.16.02 - «Металлургия черных, цветных и редких металлов»

Автореферат диссертации на соискание ученой степени кандидата технических наук

Диссертационная работа выполнена на кафедре «Металлургии стали и ферросплавов» Национального исследовательского технологического университета «МИСиС»

Научный руководитель:					
профессор, доктор технических наук	Окороков Борис Николаевич				
Официальные оппоненты:					
профессор НИТУ «МИСиС», доктор					
технических наук	Рожков Игорь Михайлович				
профессор Московского Государственного					
Машиностроительного Университета					
(МАМИ), доктор технических наук	Смирнов Николай Александрович				
Ведущая организация:	ГНЦ РФ ФГУП «Центральный научно-				
	исследовательский институт черной				

Защита диссертации состоится «24» апреля 2014 года в 10 часов на заседании диссертационного совета Д 212.132.02 при Национальном исследовательском технологическом университете «МИСиС» по адресу:

металлургии им. И.П.Бардина» (ФГУП

«ЦНИИЧЕРМЕТ им. И.П. Бардина»)

119049, Москва, Ленинский проспект, д. 6, корп. 1, ауд. А-305.

С диссертацией можно ознакомиться в библиотеке Национального исследовательского технологического университета «МИСиС».

Автореферат диссертации размещен на официальном сайте Национального исследовательского технологического университета «МИСиС» - <u>http://misis.ru</u>. Объявление о защите размещено на официальном сайте Министерства образования и науки РФ - <u>http://mon.gov.ru</u>.

Отзывы на автореферат диссертации (в двух экземплярах, заверенные печатью учреждения) просьба направлять по адресу: 119049, г. Москва, Ленинский проспект, д.4, Ученый Совет. Копии отзывов можно прислать на e-mail: <u>o.a.komolova@gmail.com</u>.

Автореферат разослан «21» марта 2014 года.

Ученый секретарь диссертационного совета Д 212.132.02, кандидат технических наук, доцент

./M.

А.В. Колтыгин

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы

Повышение требований к качеству стали предопределяет необходимость точного попадания в узкий диапазон заданного химического состава для конкретных марок стали.

Для получения заданного качества готовой продукции необходимо контролировать и управлять процессом производства стали на каждом этапе, начиная от расчета шихты до момента получения готовой продукции. Это позволит эффективно использовать время и энергоресурсы, в связи с чем процесс необходимо проводить по наиболее рациональной траектории. Для необходимо этих задач иметь физико-химические решения описания металлургических процессов современных И математические модели, учитывающие состав взаимодействующих фаз И тепловые режимы, отражающие динамические характеристики процессов плавления, растворения, взаимодействия интенсивности перемешивания, скорости между всеми компонентами шлаковой и металлической фаз, адекватно описывающие реакции процесса на управляющие воздействия. Интегрирующими, т.е. объединяющими все эти процессы, являются шлаковая и металлическая фазы, которые являются важнейшими в определении поведения всей системы в целом. Состав и температура этих фаз практически полностью определяют траекторию развития процесса.

Цель работы

Разработать теоретически обоснованное физико-химическое описание процессов взаимодействия между компонентами системы шлак-металл, происходящих в кислородном конвертере и агрегате ковш-печь.

Разработать физико-химическое описание и математическую модель процесса образования кислородного факела во время продувки в кислородном конвертере.

Разработать алгоритмы и программное обеспечение, позволяющее адекватно описывать реакции процесса и изменения основных переменных характеристик ванны на управляющие воздействия при обработке металла в агрегате ковш-печь.

Выполнить проверку разработанных моделей, алгоритмов и программного обеспечения сравнением с результатами промышленных плавок.

Используя разработанное программное обеспечение "АКП", провести анализ процесса обработки металла на промышленном агрегате ковш-печь и выдать рекомендации для коррекции технологического режима с целью повышения качества готовой продукции и улучшения технико-экономических показателей.

Научная новизна

1. На основе применения положений термодинамики необратимых процессов разработано физико-химическое описание взаимодействий между компонентами шлаковой и металлической фаз, учитывающих параллельное протекание реакций.

2. Разработана оригинальная, легко трансформируемая методика расчета скоростей реакций взаимодействия между компонентами шлаковой и металлической фаз для динамического моделирования технологических процессов, протекающих в кислородном конвертере и агрегате ковш-печь, учитывающая неравновесное состояние всей системы.

3. Создано физико-химическое описание и математическая модель образования кислородного факела при взаимодействии кислородной струи с атмосферой конвертера. Показано, что при моделировании кислородного факела необходимо учитывать массу, температуру, химический состав присоединенных конвертерных газов и процесс окисления {CO} до {CO₂}, что оказывает значительное влияние на температуру, химический состав факела и конечный результат процесса.

Практическая значимость

1. Создано программное обеспечение "АКП" для динамического моделирования технологического процесса обработки металла в агрегате ковшпечь. Программное обеспечение было использовано для коррекции технологии внепечной обработки трубных марок стали для ОАО "ОМК-Сталь", использовано в качестве учебного тренажера для обучения студентов и персонала металлургических предприятий, что подтверждено "Справкой".

2. Создано программное обеспечение "Кислородный факел" на базе разработанной математической модели, проведена проверка адекватности работы по экспериментальным данным промышленных плавок, программа используется в учебном процессе в НИТУ «МИСИС» для обучения студентов.

3. Разработанные математические модели интегрированы в тренажер "Кислородно-конвертерный процесс". Тренажер "Кислородно-конвертерный процесс" разработан в рамках программы развития НИТУ "МИСиС" и используется для обучения студентов (интернет ресурс http://www.misis.ru/tabid/1225/Default.aspx).

Апробация работы

Материалы диссертации доложены и обсуждены на XII международном 22-26 Конгрессе сталеплавильщиков (г. Выкса, октября 2012 г.), Международной научной конференций "Физико-химические основы металлургических процессов", посвященная 110-летию со дня рождения академика А.М. Самарина» (Москва, ИМЕТ РАН, 2012), ІХ Российской ежегодной конференции молодых научных сотрудников и аспирантов «Физикохимия и технология неорганических материалов» (Москва, ИМЕТ РАН, 2012), Х Российской ежегодной конференции молодых научных сотрудников и аспирантов «Физико-химия и технология неорганических материалов» (Москва, ИМЕТ РАН, 22-25 октября 2013 г.).

Структура и объем работы

Диссертация изложена на 117 страницах машинописного текста и содержит введение, 3 главы, общие выводы по работе, 35 рисунков, 12 таблиц, 4 приложения. Список использованной литературы состоит из 78 наименований.

Публикации

По результатам диссертационной работы опубликовано 6 печатных работ, в том числе 2 статьи в изданиях из списка, рекомендованного ВАК.

Достоверность научных результатов

Достоверность полученных результатов подтверждается применением современных методов и методик исследования, хорошей воспроизводимостью и согласованностью результатов расчетов и экспериментальных исследований. Текст диссертации и автореферат проверены на отсутствие плагиата с помощью программы "Антиплагиат" (http://antiplagiat.ru).

СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы диссертации и дана общая характеристика диссертационной работы. Изложены цели и задачи исследования.

B первой главе выполнен анализ литературных данных ПО существующим математическим моделям, применяемым для прогнозирования состояний современных переменных металлургических процессов. Рассмотрены основные подходы к описанию взаимодействий, происходящих между компонентами шлаковой и металлической фаз.

Все рассмотренные модели в основном базируются на классической теории достижения равновесия между всеми компонентами системы шлак – металл. Методы классической термодинамики позволяют судить о направлении развития тех или иных процессов, оценивать возможность достижения конечного результата. Это относится исключительно к системам закрытым и равновесным.

Металлургические процессы – это процессы необратимые. Они представляют собой открытые системы с непрерывными или дискретными потоками масс, как на входе, так и на выходе. Следствием этого является то, что траектории этих процессов не могут соответствовать равновесным состояниям. Ведущие металлурги-ученые XX века В.Е. Грум-Гржимайло, М.М. Карнаухов, В.И. Баптизманский, В.И. Явойский и многие другие подчеркивали, что равновесие в сталеплавильных процессах недостижимо.

Показано, что динамическая математическая модель должна включать кроме балансов масс компонентов по взаимодействующим фазам, общего баланса масс и тепла, особую систему уравнений, описывающую неравновесную связь между компонентами различных фаз.

Во второй главе приведено физико-химическое описание процесса взаимодействия между компонентами шлаковой и металлической фаз для сталеплавильных процессов.

При создании математического описания взаимодействий между компонентами системы шлак-металл учитывалось, что при выплавке и внепечной обработке стали металлургические системы не достигают равновесия, а находятся в стационарном неравновесном состоянии; что химические реакции между компонентами системы шлак-металл протекают одновременно; направление реакций - определяет градиент химического потенциала; возможно протекание как прямых, так и обратных реакций по следующей схеме:

$$l_1a_1 + l_2a_2 \xrightarrow{} l_3a_3 + l_4a_4$$

где a_1 , a_2 – исходные компоненты реакции;

аз, а4- продукты реакции;

 l_1, l_2, l_3, l_4 – стехиометрические коэффициенты реакции.

На основании этого допущения была создана "матрица" реакций между основными компонентами системы шлак – металл (приложение 1).

По горизонтали (х) представлены компоненты шлаковой фазы, которые потенциально могут выступать в роли окислителей, в их число были включены

растворенный в металле кислород и сера, так как они в соединениях с компонентами металла могут проявлять отрицательную степень окисления. По вертикали (у) представлены компоненты металлического расплава. Для прямой реакции в "матрице" приведена обратная, например, для реакции с координатами (4; 3) есть обратная реакция (3; 4). Для реакции взаимодействия компонентов шлаковой фазы с углеродом обратные реакции не учитывали, так как прямые реакции идут с образованием оксида углерода, покидающего систему шлак-металл.

В соответствии с постулатами Л. Онзагера сделано допущение, что скорость реакции пропорциональна градиенту химического потенциала и рассчитывается по формуле:

$$V_i = -S_{\text{nor}}L \operatorname{grad} \mu_i, \qquad (1)$$

где V_i - скорость взаимодействия *i*-ого компонента, моль/с;

 $S_{\text{пов}}$ - поверхность взаимодействия, м²;

L - коэффициент Л. Онзагера, моль²/(Дж \cdot с \cdot м);

 $grad \mu_i$ - градиент химического потенциала *i*-ого компонента, Дж/(моль·м).

Поскольку $grad \mu_i = -\frac{A}{\delta}$, то

$$V_{i} = S_{\text{nob}} L \frac{A}{\delta} = -S_{\text{nob}} L \frac{RT}{\delta} \ln \frac{K_{\phi}}{K_{p}} = S_{\text{nob}} L \frac{RT}{\delta} \ln \frac{K_{p}}{K_{\phi}} \quad , \qquad (2)$$

где A - химическое сродство $A = -RT \ln \frac{K_{i,\phi}}{K_{i,p}}$, Дж/моль;

 δ - толщина пограничного слоя, м;

*К*_р и *К*_ф – равновесная и фактическая константа реакции.

Все компоненты, находящиеся в зоне взаимодействия в системе шлакметалл находятся в равных условиях турбулентного массопереноса, поэтому было сделано допущение, что площадь поверхности взаимодействия, коэффициент Онзагера, температура и толщина пограничного слоя одинаковы для всех реакций. Обозначим $\beta^* = S_{\text{пов}}L\frac{1}{\delta}$, тогда скорость взаимодействия *i* компонента запишется следующим образом:

$$V_i = \beta^* RT \ln \frac{K_p}{K_\phi} \tag{3}$$

Из выражения (3) следует, что скорости взаимодействия компонентов в системе шлак-металл отличаются величиной $\ln \frac{K_p}{K_{\phi}}$. Для расчета скоростей реакций взаимодействий между компонентами системы шлак-металл был разработан итерационный алгоритм (рис. 1), в котором единица времени (одна секунда) разбивается на интервалы. Внутри интервала рассчитывали значения K_p и K_{ϕ} для каждой из реакций, представленных в матрице. Реакцию, имеющую наибольшее значение $\ln \frac{K_p}{K_{\phi}}$ принимали, за базовую. Скорость протекания базовой реакции за один интервал времени принимали равной $V_{\delta a 3} = 1$ моль/интервал, скорости всех остальных реакций пересчитывались по формуле:

$$V_{i} = V_{_{6a3}} \ln \frac{K_{\mathrm{p},i}}{K_{\mathrm{\phi},i}} / \ln \frac{K_{\mathrm{p},_{6a3}}}{K_{\mathrm{\phi},_{6a3}}}, \qquad (4)$$

После расчета скоростей протекания реакций, представленных в "матрице" реакций, проводили пересчет химического состава металла и шлака и переходили с новыми характеристиками состава на следующий интервал времени, этот цикл продолжался до тех пор, пока сумма $\ln \frac{K_p}{K_{\phi}}$ по всем химическим реакциям "матрицы" не принимала минимальное значение. После выхода из цикла рассчитывали скорости протекания реакций за секунду, путем сложения соответствующих интервальных скоростей. Зная скорости реакций взаимодействия между компонентами шлаковой и металлической фаз (система шлак-металл), рассчитывали материальный и тепловой баланс, химический состав, температуру всей ванны.

Рис. 1. Алгоритм расчета скоростей взаимодействия между компонентами в

системе шлак-металл

Разработанный метод расчета скоростей взаимодействий между компонентами системы шлак-металл использован для создания математических моделей кислородного конвертера и агрегата ковш-печь.

В третьей главе рассмотрено применение разработанного на базе положений линейной термодинамики необратимых процессов физикохимического описания взаимодействия между компонентами системы шлакметалл для создания динамических моделей процесса выплавки полупродукта в кислородном конвертере и внепечной обработки стали.

Создание математического описания кислородного факела и применение метода расчета скоростей взаимодействий между компонентами системы шлак-металл для разработки динамической модели кислородно-конвертерного процесса (ККП)

При создании динамической модели ККП большое внимание было уделено разработке математического описания взаимодействия кислородной струи с атмосферой конвертера. Это взаимодействие приводит к образованию кислородного факела. При встрече кислородного факела с ванной образуется реакционная зона (РЗ). На рисунке 2 представлена схема взаимодействия кислородного факела с ванной и образование оксидов, поступающих в систему шлак-металл и атмосферу агрегата.

Рис. 2. Схема процесса взаимодействия кислородного факела с металлом

и шлаком

Все характеристики, включая химический состав и температуру газового потока, на пути от фурмы до ванны существенно изменяются за счет массо - и теплообмена с окружающей средой, а также химических превращений, происходящих внутри самой струи. Величину присоединенной массы высокотемпературного газа рассчитывали по методике, описанной Е.А. Капустиным с сотрудниками^{*}.

Математическая модель, описывающая формирование кислородного факела, состоит из следующих основных блоков:

- блок расчета характеристик потока при истечении его из сопла;
- блок послойного моделирования подмешивания в факел газов из полости конвертера;
- термодинамический блок расчета процесса окисления {CO} до {CO₂};
- блок расчета пространственной конфигурации факела.

В качестве основных допущений было принято, что реакция окисления $\{CO\}$ до $\{CO_2\}$ успевает пройти до равновесия, используется модель идеального смешения, тепловая энергия подмешанных конвертерных газов и экзотермической реакции дожигания $\{CO\}$ до $\{CO_2\}$ расходуется на нагрев факела и излучение на стенки конвертера. В каждом слое рассчитывали средний химический состав и температуру кислородного факела.

Система уравнений (5), состоящая из материального и теплового балансов, фактической и равновесной констант реакции окисления $\{CO\}$ до $\{CO_2\}$ в факеле, позволяет рассчитать средний состав и температуру факела по всей его длине.

$$\begin{cases} Q^{\text{TEXH.}O_2} + Q_{CO}^{\text{K.F.}} + Q_{CO_2}^{\text{K.F.}} + Q_{CO_2} + Q_{XUM,p.} = Q_{O_2}^{\text{факел}} + Q_{N_2}^{\text{факел}} + Q_{Ar}^{\text{факел}} + Q_{CO}^{\text{факел}} + Q_{CO_2}^{\text{факел}} + Q_{CO_2}^{\text{φaken}} + Q_{CO_2}$$

^{*} Капустин Е.А и др. Исследование присоединенной массы сверхзвуковой струи на газодинамическом участке // Ждановский Металлургический Институт. Тепло – и массообменные процессы в ваннах сталеплавильных агрегатов. -М.: Металлургия. 1975 г. - с.19-35.

где $Q^{\text{техн.}O_2}$ - физическое тепло технического кислорода продувки, кДж; $Q_{CO}^{\text{к.г.}}$, $Q_{CO_2}^{\text{к.г.}}$ - физическое тепло присоединенных газов ({CO}, {CO_2}), кДж; $Q_{\text{хим.р.}}$ - тепло, выделяющееся при окислении {CO} до {CO_2}, кДж; $Q_{O_2}^{\text{факел}}$, $Q_{N_2}^{\text{факел}}$, $Q_{CO}^{\text{факел}}$, $Q_{CO_2}^{\text{факел}}$ - теплосодержание кислорода, азота, аргона, {CO}, {CO_2}, кДж;

*Q*_{потери} - тепло, теряемое газовым факелом излучением на футеровку конвертера и зеркало металла, кДж;

 $p_{CO}, p_{CO_2}, p_{O_2}$ - парциальное давление {CO}, {CO₂}, {O₂};

Т^{факел} - температура факела, К;

 ΔG^0 - изменение энергии Гиббса реакции окисления {CO} до {CO₂}, Дж/моль.

Разработанное математическое описание процесса взаимодействия кислородной струи с конвертерными газами легло в основу программного обеспечения "Кислородный факел", рассчитывающего изменение химического состава, температуры, скорости факела на всей его протяженности.

Результаты исследований, проведенные Яковлевым В. В., Филипповым С. И., Горловым С. М. и др ^{*} в десятитонном конвертере с использованием трехсопловой фурмы при истечении кислорода в атмосферу работающего конвертера, были использованы для адаптации и проверки адекватности работы программы "Кислородный факел". Экспериментальные исследования проводились при условиях: диаметр выходного сечения сопла- 19 мм, расход кислорода на фурму- 40 м³/мин, чистота технического кислорода- 92%. Температура отходящих газов принималась равной 1700 К, состав отходящих газов {CO}=85%, {CO₂}=15%. Сравнение результатов расчета по программе

^{*} Исследование закономерностей составов дутьевых потоков в подфурменной зоне кислородного конвертера. Сообщение 1 и 2/ Яковлев В. В., Филиппов С. И., Нечаев Л.С., Горлов С. М. и др. // Изв. вузов. Черная металлургия. -1973. -№3. -с. 23-25. №7.-с.33-35.

"Кислородный факел" с экспериментальными данными (рис. 3) показало хорошее соответствие расчетных и экспериментальных значений.

Рис. 3. Изменение концентрации кислорода в факеле в зависимости от удаленности от сопла (в калибрах) в 10-тонном конвертере.

Среднеквадратическое отклонение расчетных значений концентрации кислорода в факеле от экспериментальных составляет 0,02 (объемная доля), что говорит об адекватности математической модели и корректности работы программы. Результаты показали, что принятые при разработке математической модели допущения не внесли существенных погрешностей.

Проведенный расчет для условий продувки металла через четырехсопловую фурму (диаметр сопла в критическом сечении - 28 мм, диаметр входного сечения сопла - 35 мм, расход кислорода на фурму – 1200 м³/мин, температура конвертерных газов - 1800 К, химический состав конвертерных газов: $\{CO\}_{\kappa r} = 90\%$, $\{CO_2\}_{\kappa r} = 10\%$, длина факела - 4.5 м) показал, что концентрация двуокиси углерода в факеле достигает некоторого максимума

(при температуре факела порядка 2700 К), после чего следует снижение концентрация {CO₂}, сопровождающееся ростом концентрации {CO} (рис.4).

Увеличение высоты над фурмы уровнем металла приводит К существенным изменениям характеристик факела и поведения всего процесса. Подъем дутьевого устройства приводит к увеличению подмешивания конвертерных газов в факел, росту доли $\{CO_2\}$ вследствие дожигания $\{CO\}$ до {CO₂}, росту температуры факела. Кислородный факел имеет больший угол раскрытия и диаметр по сравнению с истечением в холодное пространство.

Следует отметить, что при выбранных начальных условиях возможно существенное снижение конечной концентрации кислорода в факеле, вплоть до 5%, что может наблюдаться при высоком положении фурмы (~4,5 м). Расчеты показывают, что во время продувки с высотой фурмы порядка 1,2 м факел будет состоять из $\{O_2\}$ и $\{CO_2\}$ примерно поровну, при этом содержание $\{CO\}$

в факеле мало, что подтверждается промышленными экспериментальными данными российских и немецких исследователей ^{*}.

Оценка переменных состояния факела, в том числе его геометрических характеристик, является важнейшей задачей при создании управляющих систем для кислородно-конвертерного процесса, т.к. позволяет прогнозировать и оптимизировать процесс рафинирования металла от примесей путем поиска наиболее эффективного пути регулирования положения фурмы, как одного из основных управляющих воздействий.

При встрече кислородного факела с ванной конвертера образуется реакционная зона. Методика расчета скоростей взаимодействия в реакционной зоне аналогична методике расчета взаимодействий в системе шлак- металл. В роли окислителей выступают кислород и двуокись углерода. Математические модели и алгоритмы кислородного факела, реакционной зоны, системы шлак металл были интегрированы в тренажер "Кислородно-конвертерный процесс".

Адекватность работы разработанных математических моделей проверяли по данным 10 промышленных плавок в 90 т кислородном конвертере[†].

Масса чугуна на плавках составляла от 80 до 85 т, масса лома от 5 до 10 т, масса извести 7 т. Перед началом продувки на дно конвертера загружали 2 т извести и весь лом, затем заливали чугун и начинали продувку кислородом. В течение первых 5 минут продувки загружали остальные 5 т извести. Отбор проб и замер температуры осуществляли на 3, 6, 9, 12, 15, 18 и 22 минутах продувки. Первые четыре минуты высота фурмы над уровнем спокойной ванны составляла 160 см, затем высоту уменьшали до 120 см, расход кислорода изменялся в диапазоне от 190 м³/мин до 220 м³/мин. Сравнение результатов контроля температуры и химического состава металла и шлака в процессе продувки в кислородном конверте на опытных плавках и расчетных значений представлено на рисунке 5.

^{*} Маатч Ю. Дискуссия. // В сб.: "Производство стали с применением кислорода". -М.: Металлургия. -1966. -с. 215-217.

[†] Хемдан Саббах Солиман Омар Разработка системы расчеты шихты для конвертерного процесса в условиях "Iron and steel Co" и изучение динамики окисления компонентов ванны в начальный период наведения шлака. // Диссертация на соискание ученой степени кандидата технических наук. Москва, 1990.

Рис. 5. Сравнение результатов контроля температуры и химического состава металла и шлака в процессе продувки в кислородном конверте на опытных плавках и расчетных значений.

Сравнение опытных и расчетных значений химического состава металла и температуры (рис. 5) говорит о корректности математической модели взаимодействия между компонентами шлаковой и металлической фаз и возможности ее использования для моделирования кислородно-конвертерного процесса.

Применение метода расчета скоростей взаимодействий между компонентами системы шлак-металл для разработки динамической модели и программного обеспечения процесса обработки металла на агрегате ковипечь (АКП)

С использованием разработанного физико-химического описания процессов взаимодействия между компонентами системы шлак-металл было создано математическое описание, алгоритмы и программное обеспечение "АКП", моделирующее процессы обработки металла на агрегате ковш-печь. Исходными данными для программного обеспечения "АКП" являются: геометрические размеры ковша и футеровки, тип футеровки, количество продувочных устройств; масса, состав, температура металла и шлака, поступающего на обработку; масса, химический состав, температура и время осуществления присадок; характеристики электрического режима и режима продувки инертным газом. Математическое описание состоит из следующих основных блоков:

- блок расчета скорости взаимодействия компонентов в системе шлакметалл;
- блок расчета количества металла и шлака, попадающего в зону взаимодействия в зависимости от мощности перемешивания ванны;
- блок расчета массы металла и шлака;
- блок расчета химического состава и температуры ванны.

На рисунке 6 представлен фрагмент интерфейса программного обеспечения "АКП", имитирующего промышленную плавку стали 20 на ОАО "ОМК-Сталь". Линиями обозначены изменения концентраций компонентов и температуры ванны в течение обработки металла на агрегате ковш-печь, для наглядной демонстрации корректной работы программного

обеспечения "АКП" на график были нанесены точками результаты отбора проб металла и замеров температуры по ходу процесса. Стрелками обозначены моменты ввода материалов и электрической энергии.

Рис. 6. Фрагмент интерфейса программного обеспечения "АКП" при моделировании промышленной плавки стали 20 на агрегате ковш-печь на ОАО "ОМК-Сталь"

На рисунке 6 отображены динамические изменения температуры и химического состава металла, происходящие во время обработки металла на агрегате ковш-печь, наглядно видна реакция ванный на управляющие воздействия. Например, после ввода материалов, содержащих кальций и алюминий (порядковые номера вводимых материалов №1-№4), происходит десульфурация металла. Ввод легирующих материалов приводит к повышению концентрации соответствующих компонентов металле, В включение нагрева приводит электрического К повышению температуры ванны, выключение – к снижению температуры за счет потерь тепла через стенки ковша и излучения, на нагрев инертного газа продувки и вводимых в ковш материалов до температуры расплава.

Проверку адекватности работы разработанного программного обеспечения "АКП" проводили на массиве из тридцати промышленных плавок трубных марок стали, выполненных на агрегате ковш-печь ОАО "ОМК-Сталь". По ходу каждой плавки были отобраны пробы металла и сделаны замеры температуры. Вместимость ковша -150 т, масса печного шлака, попадающего в ковш, изменялась в пределах от 0,5 т до 1,5 т, перемешивание металла осуществляли путем продувки металла инертным газом через донные пробки, расход аргона на одну продувочную пробку меняли в диапазоне от 50 до 800 л/мин в зависимости от проводимых технологических операций. В начале процесса обработки вводили раскислители и шлакообразующие материалы, в середине процесса отдавали основные легирующие элементы, раскислители и шлакообразующие.

Сравнение результатов расчетных и опытных характеристик расплава процесса обработки металла на агрегате ковш-печь приведено на рисунке 7. Среднеквадратические отклонения расчетных и экспериментальных значений химического состава и температуры металла составляют: [Mn] – 0.11%; [C] – 0.015%; [Si] – 0.02%; [P] – 0.0005%; [S] – 0.0026%; температура - 17°C.

Рис. 7. Сравнение результатов контроля температуры и химического состава расплава в процессе обработки металла на агрегате ковш-печь и расчетных значений по программе "АКП".

Выводы

1. На основе применения положений термодинамики необратимых процессов разработано физико-химическое описание и математическая модель взаимодействия между компонентами шлаковой и металлической фаз, происходящих в кислородном конвертере и агрегате ковш-печь.

2. Создано физико-химическое описание и математическая модель образования кислородного факела при взаимодействии кислородной струй с атмосферой конвертера. Разработано программное обеспечение "Кислородный факел", позволяющее прогнозировать химический состав, температуру, скорость, диаметр кислородного факела при встрече с ванной в реальном конвертерном процессе.

3. Проведена работы обеспечения проверка программного "Кислородный факел" данным. по экспериментальным Полученное среднеквадратическое отклонение расчетных значений концентрации кислорода в факеле от экспериментальных составляет 0,02 (объемная доля).

4. Создано программное обеспечение для динамического моделирования процесса обработки металла в агрегате ковш-печь -"АКП", состоящее из разработанных математических моделей: - взаимодействия между компонентами шлаковой и металлической фазы; - усвоения присадок; - нагрева металла; - перемешивания металла.

5. Проведена проверка работы программного обеспечения "АКП" по результатам химического анализа проб и замеров температуры металла на агрегате ковш-печь ОАО "ОМК-Сталь". Экспериментально доказано, что программное обеспечение "АКП" позволяет адекватно описывать динамические изменения основных характеристик металла, шлака и реакции процесса на управляющие воздействия. Полученные среднеквадратические отклонения расчетных и экспериментальных значений составляют: [Mn] – 0.11%; [C] – 0.015%; [Si] – 0.02%; [P] – 0.0005%; [S] – 0.0026%; температура - 17°С.

6. Программное обеспечение было использовано для коррекции технологии внепечной обработки трубных марок стали для условий ОАО

"ОМК-Сталь", так же программное обеспечение "АКП" использовано в качестве учебного тренажера для обучения студентов и персонала предприятия, что подтверждено "Справкой".

7. Разработанные математические модели были интегрированы в тренажер "Кислородно-конвертерный процесс". Тренажер "Кислородно-конвертерный процесс" разработан в рамках программы развития НИТУ "МИСиС" и используется для обучения студентов (интернет ресурс http://www.misis.ru/tabid/1225/Default.aspx).

Публикации по теме диссертации в изданиях, рекомендованных ВАК:

1. Комолова О.А., Окороков Б.Н., Шендриков П.Ю. Моделирование факела кислородных струй конвертерного процесса // Металлург. 2007. №4. с. 54-56.

2. Окороков Б.Н., Шендриков П.Ю., Комолова О.А., Поздняков В.Г. Создание базовой интегральной динамической модели современных конвертерных процессов на основе законов неравновесной термодинамики. Сообщение 1. // Известия высших учебных заведений. Черная металлургия. 2010. №5. с. 31-37.

Другие публикации:

3. Лузгин В.П., Косырев К.Л., Комолова О.А. Энергетика применения альтернативных энергоносителей при плавке в ДСП // Черные металлы. 2010, №10, с.8-12.

4. Окороков Б.Н., Комолова О.А., Григорович К.В. Физико-химическое описание взаимодействия компонентов в системе шлак-металл // Международная научная конференция "Физико-химические основы металлургических процессов", посвященная 110-летию со дня рождения академика А.М. Самарина / Сборник материалов. 2012 г. с. 47

5. Комолова О.А. Разработка математической модели внепечной обработки стали // Х Российская ежегодная конференция молодых научных сотрудников и аспирантов «Физико-химия и технология неорганических

материалов». Москва. 22-25 октября 2013г. / Сборник материалов. – М: ИМЕТ РАН, 2013, 485 с.

6. Окороков Б.Н., Комолова О.А. Математическое моделирование процесса обработки металла на агрегате ковш-печь // Труды XII конгресса сталеплавильщиков. Выкса, 22-26 октября 2013, с. 167-170.

			Приложение 1 – "Матрица" прямых и обратных реакций							
	X	1	2	3	4	5	6	7	8	9
у		[0]	[S]	(FeO)	(MnO)	(CaO)	(MgO)	(SiO ₂)	(Al ₂ O ₃)	$(\mathbf{P}_2\mathbf{O}_5)$
1	[0]		{SO ₂ }=[S]+2[O]	(FeO)=[Fe]+[O]	(MnO)=[Mn]+[O]	(CaO)=[Ca]+[O]	(MgO)=[Mg]+[O]	(SiO ₂)=[Si]+2[O]	(Al ₂ O ₃)=2[Al]+3[O]	$(P_2O_5)=2[P]+5[O]$
2	[S]	[S]+2[O]={SO ₂ }		[S]+(FeO)= =FeS+[O]	[S]+(MnO)= =MnS+[O]	[S]+(CaO)= =CaS+[O]	[S]+(MgO)= =MgS+[O]	$2[S]+(SiO_2) =$ $=SiS_2+2[O]$	$3[S]+(Al_2O_3)=$ = $Al_2S_3+3[O]$	
3	[Fe]	[Fe]+[O]=(FeO)	[Fe]+[S]=FeS		[Fe]+(MnO)= =(FeO)+[Mn]	[Fe]+(CaO)= =(FeO)+[Ca]	[Fe]+(MgO)= =(FeO)+[Mg]	$[Fe] + \frac{1}{2}(SiO_2) =$ =(FeO)+ $\frac{1}{2}[Si]$	$[Fe] + \frac{1}{3}(Al_2O_3) =$ =(FeO)+ $\frac{2}{3}[Al]$	$[Fe] + \frac{1}{5}(P_2O_5) =$ =(FeO) + $\frac{2}{5}[P]$
4	[Mn]	[Mn]+[O]=(MnO)	[Mn]+[S]=MnS	[Mn]+(FeO)= =(MnO)+[Fe]		[Mn]+(CaO)= =(MnO)+[Ca]	[Mn]+(MgO)= =(MnO)+[Mg]	$[Mn] + \frac{1}{2}(SiO_2) =$ =(MnO) + $\frac{1}{2}[Si]$	$[Mn] + \frac{1}{3}(Al_2O_3) =$ =(MnO) + $\frac{2}{3}[Al]$	$[Mn] + \frac{1}{5}(P_2O_5) =$ =(MnO) + $\frac{2}{5}[P]$
5	[Ca]	[Ca]+[O]=(CaO)	[Ca]+[S]=CaS	[Ca]+(FeO)= =(CaO)+[Fe]	[Ca]+(MnO)= =(CaO)+[Mn]		[Ca]+(MgO)= =(CaO)+[Mg]	$[Ca] + \frac{1}{2}(SiO_2) =$ =(CaO)+ $\frac{1}{2}[Si]$	$[Ca] + \frac{1}{3}(Al_2O_3) =$ =(CaO) + $\frac{2}{3}[Al]$	$[Ca] + \frac{1}{5}(P_2O_5) =$ =(CaO) + $\frac{2}{5}[P]$
6	[Mg]	[Mg]+[O]=(MgO)	[Mg]+[S]=MgS	[Mg]+(FeO)= =(MgO)+[Fe]	[Mg]+(MnO)= =(MgO)+[Mn]	[Mg]+(CaO)= =(MgO)+[Ca]		$[Mg] + \frac{1}{2}(SiO_2) =$ =(MgO)+ $\frac{1}{2}[Si]$	$[Mg] + \frac{1}{3}(Al_2O_3) =$ =(MgO) + $\frac{2}{3}[Al]$	$[Mg] + \frac{1}{5}(P_2O_5) =$ =(MgO) + $\frac{2}{5}[P]$
7	[Si]	[Si]+2[O]=(SiO ₂)	[Si]+2[S]=SiS ₂	$\frac{1}{2}[Si]+(FeO)=$ $=\frac{1}{2}(SiO_2)+[Fe]$	$\frac{1}{2}[Si]+(MnO)=$ $=\frac{1}{2}(SiO_2)+[Mn]$	$\frac{1}{2}[Si]+(CaO)=$ $=\frac{1}{2}(SiO_2)+[Ca]$	$\frac{1}{2}[Si]+(MgO)=$ $=\frac{1}{2}(SiO_2)+[Mg]$		$[Si] + \frac{2}{3}(Al_2O_3) =$ =(SiO_2) + $\frac{4}{3}[Al]$	$\frac{5}{2}[Si]+(P_2O_5) = \\ = \frac{5}{2}(SiO_2)+2[P]$
8	[Al]	2[Al]+3[O]=(Al ₂ O ₃)	2[Al]+3[S]=Al ₂ S ₃	$\frac{2}{3}[AI]+(FeO)=$ $=\frac{1}{3}(AI_2O_3)+[Fe]$	$\frac{2}{3}[AI]+(MnO)=$ = $\frac{1}{3}(AI_2O_3)+[Mn]$	$\frac{2}{3}[Al]+(CaO)=$ = $\frac{1}{3}(Al_2O_3)+[Ca]$	$\frac{2}{3}[Al]+(MgO) = \\ = \frac{1}{3}(Al_2O_3)+[Mg]$	$\frac{4}{3}[AI]+(SiO_2)=$ = $\frac{2}{3}(AI_2O_3)+[Si]$		$\frac{10}{3}[Al]+(P_2O_3)=$ = $\frac{5}{3}(Al_2O_3)+2[P]$
9	[P]	2[P]+5[O]=(P ₂ O ₅)		$\frac{2}{5}[P]+(FeO) =$ = $\frac{1}{5}(P_2O_5)+[Fe]$	$\frac{2}{5}[P]+(MnO)=$ = $\frac{1}{5}(P_2O_5)+[Mn]$	$\frac{2}{5}[P]+(CaO)=$ = $\frac{1}{5}(P_2O_5)+[Ca]$	$\frac{2}{5}[P]+(MgO) = = \frac{1}{5}(P_2O_5)+[Mg]$	$2[P] + \frac{5}{2}(SiO_2) =$ =(P_2O_5) + $\frac{5}{2}[Si]$	$2[P] + \frac{5}{3}(Al_2O_3) =$ =(P_2O_5) + $\frac{10}{3}$ [Al]	
10	[C]	[C]+[O]={CO}	[C]+2[S]=CS ₂	[C]+(FeO)= =[Fe]+{CO}	[C]+(MnO)= =[Mn]+{CO}	[C]+(CaO)= =[Ca]+{CO}	[C]+(MgO)= =[Mg]+{CO}	$2[C]+(SiO_2)=$ =[Si]+2{CO}	$3[C]+(Al_2O_3)=$ =2[Al]+3{CO}	$5[C]+(P_2O_5)=$ =2[P]+5{CO}