

LiCu₂O₂,

01.04.07

-

		5
1.		13
1.1.		
-		13
1.1.1.		
		13
1.1.2.		16
1.1.3.		18
1.2	LiCu ₂ O ₂	33
1.2.1.		33
1.2.2.	LiCu ₂ O ₂	36
1.2.3.	LiCu ₂ O ₂	39
1.3.	LiCu ₂ O ₂	
		41
1.4	,	
		43
2.		
		45
2.1.		45
2.1.1		45
2.1.2.		46
2.2.		49
2.3.		50
2.3.1.		50
2.3.2.		52
2.3.3.		53
2.4.	()	53
2.5.		54

2.6.					57
2.7.					57
3.					
					60
3.1.					60
3.1.1.	-			LiCu ₂ O ₂	60
3.1.2.	-			LiCu ₂ O ₂	
			Ag,	Zn	63
3.1.3.			LiCu ₂ O ₂		63
3.1.4.			LiCu ₂	O_2	64
3.1.5.					
					65
3.2.					66
3.2.1.					
					66
3.2.2.				LiCu ₂ O ₂	
					70
3.3.					71
3.3.1.					71
3.3.2.					72
3.3.2.1.					72
3.3.2.2.		_			73
3.3.3.					76
	Ag Zn				
3.3.4					
					79
3.3.5					82

3.4.	LiCu ₂ O ₂	83
3.4.1	$LiCu_2O_2$	83
3.4.2	LiCu ₂ O ₂	86

3.5	LiCu ₂ O ₂	88
3.5.1.	LiCu ₂ O ₂	88
3.5.2.	LiCu2O2	95
3.5.2.1.	A4	95
3.5.2.2	N3	98
3.5.2.3	W2	100
3.5.3	LiCu ₂ O ₂	103

3.5.3.1	$Li(Cu_{1-x}Ag_x)_2O_2$	103

3.5.3.2
$$\text{Li}(\text{Cu}_{1-x}\text{Zn}_x)_2\text{O}_2$$
 105

()

 $LiCu_2O_2$ (LCO)

,

,

LCO

,

,

,

•

,

LCO,

,

5

;

,

 $LiCu_2O_{2+}$,

LiCu₂O₂

,

	9		•
	,		
:			
1.			Li ₂ CuO ₂ –CuO _x ;
	-		
	LiCu ₂ O ₂		$Li(Cu,Zn)_2O_2$,
(Li,Ag)Cu ₂ O ₂ ;			
4 10 10 ;		LiCu ₂ O ₂	2.
2.		Li(C	$Cu_{1-x}Zn_x)_2O_2$, (Li ₁₋
$_{x}Ag_{x})Cu_{2}O_{2}$	= 0 - 0,12	= 0 - 0,04,	
Zn Ag		LiCu ₂ O ₂	
,			
$Li(Cu_{1-x}Zn_x)_2O_2$	$_{2},(\mathrm{Li}_{1-x}\mathrm{Ag}_{x})\mathrm{Cu}_{2}\mathrm{O}_{2}.$		
3.			
DC,			
() = AC	LiCu ₂ O ₂		$Li(Cu,Zn)_2O_2,$
$(Li,Ag)Cu_2O_2$ 4	,2-300 0,1-100		
3.	,	LiCu ₂ O ₂	
$Li(Cu,Zn)_2O_2$, $(Li,Ag)Cu_2$	O_2	DC	<i>T</i> ~ 300 K
			-
$(_{\rm DC} = _{\rm o} \exp(E_{\rm a}/k_{\rm B}T))$			

,

,

•

,

•

,

,

,

,

•

LCO , O,

,

•

0

,

,

,

,

,

150 K.

.

,

,

0

,

,

•

,

,

,

. 12 - 26 2014

CuO₄-

(ladder compound),

,

,

 $LiCu_2O_2$

 $LiCu_2O_2$

,

1	, DC	AC
LiCu ₂ O ₂	,	, [.] //
. «	•	. ». 2013. – 2. –
.174–178.		
2.		
,		LiCu ₂ O ₂ /
,	, · · , ·	, ,
//	. 20155	1. – 6. – .660–668 (Hieu
Sy Dau. Effect of silver	solubility on the structur	cal, electrical, and magnetic
properties of multiferroic	LiCu ₂ O ₂ / Hieu Sy D	au, K.E. Kamentsev, V.P.
Sirotinkin, K.A. Yakovlev,	E.A. Tishchenko, A.A.	Bush // Inorganic Materials,
2015. V. 51 6 P. 598-	-606).	
3.		
LiCu ₂ O ₂	/	$, \cdot \cdot , \cdot \cdot$
, ,	••• • • • •	// . 2015.
– 5.– . 716–720 (Sirotir	ıkin V. P. X-Ray Diffractio	n Analysis of LiCu ₂ O ₂ crystals
with additives of silver atoms	s / V.P. Sirotinkin, A.A. Bus	sh, K.E. Kamentsev, H.S. Dau,
K.A. Yakovlev, and E.A. Tisl	hchenko // Crystallography	Reports. 2015. – Vol. 60. – .
5. – P. 662–666).		
4		
	LiCu ₂ O ₂	
/	, ,	, //
. «	».	2015. – 2. – . 78–82.

5.

. .

LiCu₂O₂

/..., ... // . . . 4-'11», ~ ≫ - ≪ , 2011 . 3-7 N. . - . 229–230. . . DC 6. AC $LiCu_2O_{2+}$ / . . , • • , . . XLVIII // . , . . , , 2012 , « • » - . 262–265. 7. . . $LiCu_2O_{2+}$ / . . , . . , . . , . . , . . // . IL , 2013 . , , ».- .188–191. ~ 8. dc $LiCu_2O_{2+}$ / . . , . . , . . // . L , ... , . , -2014 . « , » — . 261–264. 9. • • , , Li(Cu₁₋ $_{x}Ag_{x})_{2}O_{2}$ / . . , .. , . . , . . , . . , . . // 63--~ , 2014 . . . 12 - 26

..

12

_

,

,

•

[15, 16].

14

,

 $SrCu_2O_3 \qquad Sr_{14}Cu_{24}O_{41} \ \ [21{-}24].$

,

SrCuO₂, Sr₂CuO₃,

•

• • ,

•

[25].

•

[26, 27],

[24].

. .) [28]. (

,

,

. . [22, 24, 29].

,

:

)

,

,

,

1.1.2

[30, 31]. ,

,

,

,

16

,

,

,

(

1933

•

,

,

•

(PA – phonon assisted). C PA

•

•

, . . .

R.

« »

 $lnR \sim T^{1}$.

,

$$lnR \sim T^n$$
, $n < 1$ [43–45].

•

$$[43 - 45].$$

$$p_1(1-p_2)+p_2(1-p_1), \qquad p_1 \quad p_2 = -2$$

•

$$(\ . \qquad [46] [47]).$$

$$(\))$$

$$(\) E_a$$

•

.

 $(_{max} - \mu, _{max} + \mu)$ [44].

. .

,

•

,

,

•

,

•

.

,

,

:

exp(-2 R), 1/ -

:

,

i)

,

$$\dagger \approx \left(\frac{e^2}{k_{\scriptscriptstyle B}T}\right) p R^2 N(E_{\scriptscriptstyle F}) k_{\scriptscriptstyle B}T \approx e^2 p R^2 N(E_{\scriptscriptstyle F}), \qquad (1.2)$$

$$p = \in \exp\left(-2\Gamma R - \frac{V}{k_B T}\right),$$
 (1.3)

,
$$N(E_F)$$
 – . $N(E)$.

$$\mathsf{V} \approx \frac{1}{R^3 N(E)} \tag{1.4}$$

•

+ [44]:

R

:

R-

,

$$\left(\frac{4f}{3}\right)R^3N(\vee)d\vee, \qquad (1.5)$$

$$\Delta V = \frac{3}{4f R^3 N(E_F)},$$
(1.6)

$$\in \exp\left\{-2\Gamma R - \left[\left(\frac{4f}{3}\right)R^3 N(E_F)k_B T\right]^{-1}\right\}.$$
(1.7)

(1.7)
$$R_{opt}$$
$$2r = \left[\frac{9}{4}fR^4N(E_F)k_BT\right]^{-1}$$
(1.8)

 R_{opt} (1.7) (1.8),

$$\in \exp\left(-\frac{B}{T^{\frac{1}{4}}}\right), \ B \approx 2,1 \left[\frac{\Gamma^{3}}{k_{B}N(E_{F})}\right]^{\frac{1}{4}}, \tag{1.9}$$

(1.2) (1.3) ,

•

max ()

$$\dagger = \dagger_o \left(\frac{T_o}{T}\right)^{\frac{1}{4}},\tag{1.10}$$

$$T_{M} \qquad [36, 48]$$
$$T = 2, I^{4}.[^{-3}/k_{B}N(E_{F})] \qquad (1.12)$$

 $N(E_F)$

:

•

_{min} (

)

$$_{max} / k_B = T_0^{1/4} . T^{3/4}$$
 (1.15)

(), $(\ln, T^{1/4})$ (\ln, T^{1}) , ... [43] (SE) , ... - ... max ,

•

• *max*

,

•

 $\dagger = \dagger_0 \exp\left(-\frac{T_{SE}}{T}\right)^{\frac{1}{2}},$ (1.16) $- T_{SE}$

$$T_{SE} = \frac{\mathsf{S}_{SE}e^2\mathsf{r}}{\mid k_B},\tag{1.17}$$

$$/k_B = (TT_{\rm SE})^{1/2}.$$

 $T < T_V,$ $_{opt}(T)$
 $k_B(T_V T_{SE})^{1/2},$

$$(T_V) = k_B (T_V T_{SE})^{1/2},$$

- . $T_V,$,
(),

(ln , $T^{1/2}$).

 $_{SE} = 2,8,$

,

•

[37, 43, 44]

$$\dagger = \dagger_0 \exp\left(-\frac{T_0}{T}\right)^{\epsilon},$$
(1.18)

$$\dagger_0 = AT^{-m},$$
 (1.19)

A m -

Т

$$= 1 \quad 1/4 \qquad ,$$

$$(1.5), (1.7) \quad (1.8),$$

$$= 1/(d+1), \qquad d - \qquad .$$

$$m \qquad (1.19)$$

$$- [43] _{3} -$$

$$_{opt} > , [37] SE _{opt}$$

$$m = (_{opt}a/2 s)^{2},$$

_

,

,

,

,

$$s = /q - q_{opt}a/2 s \sim qa$$
 $qa > 1$

1

•

•

,

• .

,

/

,

,

, _

$$F(r) \sim \exp(-r/a) = 1/2 - m(<< 1) = 1/2$$

$$m(>> 1) = 9/2; = 1/4 - m(<< 1) = 1/4 \qquad m(>> 1) = 25/4.$$

$$F(r) \sim r^{-1} \exp(-r/a) = 1/2 - m(<< 1) = -3/2 \qquad m(>> 1) = 5/2; = 1/4 - m(<< 1) = 1/4$$

$$-3/4$$
 $m(>> 1) = 21/4$ [37].

(SP).

W.

[48].

$$(1.20) , W(,W) W$$

$${}_{opt} = W_{opt}/2 = T[T_o^{(d)}/T]^{2/(d+2)}, r_{opt} = (a/2)[T_o^{(d)}/T]^{2/(d+2)},$$
(1.22)
$$T_o^{(d)} = [_o^{(d)}/Ga^d]^{1/2},$$
(1.23)
$${}_o^{(d)} = 21,1 \qquad 31,2 \qquad d = 2 \qquad 3, \qquad ,$$

:

-

> $T_1^{(d)}$

SP

(1.18) (1.19),
$$= 2/(d+2) :$$
$$= {}_{o}exp\{-[T_{o}^{(d)}/T]^{2/(d+2)}\}$$
(1.24)

 $(W_{min},$

•

 W_{max}),

$$W_{opt}() > W_{max} = W_{opt}(_{1}^{(d)}), :$$

$$I^{(d)} = \{ [t_o^{(d)}W_{max}/4]^{d+1}/T_M^{(d)} \}^{1/d}, T_M^{(d)} = M^{(d)}/ga^d$$
(1.25)
$$t_o^{(d)} = 0,546 \quad 0,607 \quad M^{(d)} = 13,8 \quad 17,0$$

$$d = 2$$
 3, , $g -$ DOS.

26

:

$$= exp\{-[T_M^{(d)}/T]^{1/(d+1)} - {}_dW_{max}/T\}, \qquad (1.26)$$

$${}_d = 0,189 \qquad 0,174 \qquad d = 2$$

(1.26),

•

,

,

$$= [(e^{2}/k)^{d}g]^{1/(d-1)} = [(e^{2}/ka)^{d}/T_{M}^{(d)}]^{1/(d-1)}, \qquad (1.27)$$

 $< T_2^{(d)},$

:

,

3.

>
$$_{opt}(T_2^{(d)})$$

 $T_2^{(d)} = [/T_o^{(d)}]^{2/d},$ (1.28)
, $[T_2^{(d)} < T < _I^{(d)}],$

,
$$W_{min}$$
, (1.24)
, $W_{opt}(T_3^{(d)}) < W_{min}$, $T_3^{(d)} = (W_{min}/W_{max})^{(d+1)/d}T_1^{(d)}$.
(1.24) $max[T_2^{(d)}, T_3^{(d)}] < T < I_1^{(d)}$,
, $(W_{max} - W_{min})/ >> I$.
, $[2(T^dT_M^{(d)})]/W_{min} << 1 << T_3^{(d)}$,

.

$$= {}_{o} exp\{-W_{min}/2T - [s_{d}T_{M}^{(d)}/T]^{1/(d+1)}\},$$
(1.29)
$$s_{d} = 0,643 \qquad d = 2 \qquad 0,63 \qquad d = 3. \qquad W_{max} - W_{min}$$

(1.24) .
$$W_{max} - W_{min}$$

, $W_{max} >$
(1.26),

(1.29).

,

,

,

m, (1.18) (1.19).

$$E_D = -d \ln /d(1/k_B T) \qquad (1.18) (1.19) :$$

$$\ln[(E_D/k_B T) + m] = \ln + \ln T_{oj} + \ln(1/T), \qquad (1.30)$$

$$m (1.30)$$

$$ln(1/T),$$

$$T_{oj} (, T_{SE} T_{o}^{(d)})$$

 m, T_{oj}

,

,

,

(1.18) (1.19),

,
$$_{opt} > _{max}$$
,
= 1 $m = 1$ () $m = 3/2$
().

, , (, LCMFO [37] LSMFO [47, 50]) *m*

(),
[37]. ,
[37, 47],
$$m = 25/4$$
 9/2

(DOS)

DOS

•

,

. 1.2

•

[45].

,

SP, DOS

 $g(E_F) \sim 0,$

,

•

•

,

 $W_{\min}/2.$

•

,

 $2E_d$,

$$= W_{\min}/2 - E_d/2, \tag{1.32}$$

,

•

_

(. .)

,

S

,

[50, 51].

(d.c.),

1,

() () ~ C^{-s} (1.31) С 0,8 [43, 44]. • [44] • , , $W_1 \qquad W_2 \ (\ W = = W_1 - W_2),$ Wn , , D, F

 $\frac{nDF\cos^2{}_{\#}}{k_BT\left(1+\check{S}^2\ddagger^2\right)} \left\{1+\exp\left(\frac{\Delta W}{k_BT}\right)\right\}^{-1}$ (1.32)

F –

•

 \cos^2

1/3.

$$+ (\check{S}) = \frac{nD^2\check{S}^2 \ddagger}{3k_BT} \left(1 + \check{S}^2 \ddagger^2\right)^{-1} \left\{1 + \exp\left(\frac{\Delta W}{k_BT}\right)\right\}^{-1}$$
(1.33)

,

,

:

$$\int N \left\{ 1 + \exp\left(\frac{\Delta W}{k_B T}\right) \right\}^{-1} d\left(\Delta W\right)$$
(1.34)

N

,

NkTln2, :

$$\dagger (\check{S}) = \frac{(\ln 2) N D^2 \check{S}^2 \ddagger}{3(1 + \check{S}^2 \ddagger^2)}$$
(1.35)

[44] U

.

: $\dagger (\check{S}) = \frac{f}{6} (\ln 2) NBk_B T \check{S} D^2$ (1.36)

B-

,

:

$$\dagger (\check{S}) = A \frac{e^2}{\Gamma^3} \{ N(E_F) \}^2 k_B T \check{S} \left\{ \ln \left(\frac{\underbrace{\epsilon_{ph}}}{\check{S}} \right) \right\}^4, \qquad (1.37)$$

 $() \sim {}^{s} (s = 1)$

,

,
$$_{ph}$$
 10¹² -1,
-0,2 10⁴

 $A = (\frac{2}{24})\ln 2 = 0,3.$

,

 $[\ln(p_{ph})]^4$ s 0,8 –

,

•

R

•

s = 2			
	-	[44].	
		Bottger	Bryksin [46],
[43] .			•
A.R. Long	[51]		
			,
С		- (1.19	9)
:			
	$() \sim T^{n-s}$		(1.38)
s n			,
	()
()	
			tg

[35, 51 – 53].

$$\ddagger(T_{max}) \approx 1 \tag{1.39}$$

$$[44, 52, 54],$$

$$(= 1/2 f), :$$

$$= _{oi}exp(E_a/kT)$$
(1.40)
$$f_o = 1/2 _o$$

$$E_a -$$

•

tg

[52, 53] (tg)_{max} ~ n_0 .

1.2		LiCu ₂ O ₂
1.2.1		
	LiCu ₂ O ₂ ,	
		,
	YBa ₂	Cu ₃ O _y [55–58].
	[59]	
LiCu ₂ O ₂ [56]		Cu^+
S=1/2 Cu ²⁺	,	
	Pnma (62, $Z = 4$),
	a = 5,7286(2), b = 2,8	8588(1), $c = 12,4143(3)$ Å
[55].	a/b	,
	-	()
, ,	,	<i>ab</i> – (.
1.3).		
. 1.4		LiCu ₂ O ₂ ,

 $L_1Cu_2O_2$,

[55, 56, 58, 59].

,

[55].

O ²⁻

 CO_6

O ²⁻

 $\mathbf{C}^{\mathbf{n}+} = \mathbf{C}\mathbf{u}^{2+} \qquad \mathbf{L}\mathbf{i}^{1+}$

 CO_5

O2p,

,

.

b

O2p-Cu3d CuO₄

Pmna

[56, 57, 64].

1.2.2

LiCu₂O₂

LiCu₂O₂

-LiCuO₂-,

 Cu^{2+}

 $S{=}1{/}2$ (two-leg ladder systems).

b.

 Li^+

Cu⁺ [65–67],

NNN

 (J_2)

[66, 67]).

LiCu₂O₂

NN (J_l)

LiCu₂O₂.

$$T_{c1}=24,6$$
 $T_{c2}=23,2$ [68].

_

 $P_{\rm s}$. $T_{\rm c2}$

 $\boldsymbol{P}_{\mathrm{s}}$

•

С

(. 1.6 - 1.8). LiCu₂O₂ II (). LiCu₂O₂ (*J*~<10), (Cu–O–Cu) =94 90 [56, 58].

,

 $LiCu_2O_2$

lg -1/T (. 1.9).

d(lg)/d(1/T)

10⁹ p, Ω·cm 10 0 kHz 0 kHz 106 10^{8} 105 ਜ਼ 10⁷ ਹ ਹ ਹ 10^{4} $0.1 \\ 1.0$ 0.28 0. $1/T^{1/4}$, K^{-1/4} 0.24 0.32 10.0 100.0 10^{5} 10⁴ 10³ 0.006 0.008 1/*T*, K⁻¹ 0.002 0.004 0.010 0.012 1.9 LiCu₂O₂

0.1, 1.0, 10.0, 100.0

 $\log -1/T^{1/4})/$

 $\lg -1/T$

(

LiCu₂O₂

[79].

: () ~ T^{n-s} (1.38). s (1.38), 100 , $s \sim 0.2$ 0.1–1.0 $s \sim 0.6$ 10–100 .

[79].

 $LiCu_2O_2$ $U_{\rm o}$

,

,

. 1.10). (

,

LiCu₂O₂

,

 $U_o \approx 50.$

•

•

 $\sim 10^3$.

1.3

:

,

,

ab. С

,

:

•

,

. 1.10). **ab** (

LiCu₂O₂

II

,

,

,

1) LiCu₂O₂

,

,

•

,

. .

,

,

,

1.4

:

LiCu₂O₂.

,

,

,

LiCu₂O₂,

,

)

;

:

LiCu₂O₂

•

,

	,	•	
	20÷100		
	1 - 6	,	2 -
50	/	, -	

(

•

).

•

,

_

~200

,

:

2.1.2

,

,

- 12 10

,

([83–86]),

 T_{ls} $D \qquad : \qquad (d /dz)/V > T_{ls}/D) \qquad (3.1)$

 $V \sim < 6 / .$

49

, 11 –

.

,

2.3.2

a, *b*, *c* :

$$2d/sin = ,$$
 (3.4)

$$1/d^{2} = h^{2}/a^{2} + k^{2}/b^{2} + l^{2}/c^{2}$$
(3.5)

h, k, l

,

CELREF [89].

•

•

Q1500.vi

r)

	().
	,	
	Q1500 D	F. Paulik, J. Paulic, L. Erdey.
	, -	(),
	,	, , ,
	2.5	
		. .
2.7.		, Au-Au:Fe,
		0,1 ,
(. 2.8)	-	
		5,26 .
		-300 1
amplifier,		(10) LOCK_III
1 7	10 ⁻⁹ .	, 10 ⁻¹² -10 ⁻¹³ .
		- , ,

$$U_o$$
 U_o , R

$$(0 < U_o < 250)$$

 $(1.74.10^3$, $U_o^{\sim} = 100)$
 $(R = 5,26)$

)

•

,

)

,

(
ſ	

... (

Labview (. 2.9).

2.8.

	:1-	, 2 –		
In-Ga	, 3 –			
, 4 –	Au-Au:Fe		, 5 –	, 6 –

7-78/1	10	((. 2.9).
	,	,		
,				0^0
7-78.				

LabView.

$$R_{O} = \frac{U - U}{U} R$$

(3.6)

U R -

•

,

, U –

:

•

Au-Au:Fe.

$$t = \frac{l}{R_0 \cdot S}$$

$$I \quad S = 7.20$$

$$(3.7)$$

7-20

•

0,1–100 . . 2.9 . , , 7-78.

LabView.

2.6

		M(T)	5
- 300	SQUID	MPMS-XL-7 Qu	ıantum
Design Inc	(H = 20)	ZFC (zero- field-	cooled
) FC (field-cooled –).	

,

:

,

,

,

,

().

"Orbis" "EDAX" () Si(Li) , Na. 30 : , 40 60 , 50, (): -2 (. 2.10)

-25

.

20-50 .

.

,

(25)

,

(-4,

2.10.

"

-5).

$$-2 \ 10^{-4} \ -10^{-5}$$
 %.

-100,

3. 3.1						
0,12 .	(Li _{1-x} Ag _x)Cu ₂	O ₂ Li(Cu ₁	$-xZn_x)_2O_2$	LiCu ₂ C 0 x) ₂ 0,05	0 x
3.1.1	- [51–54]			LiCu ₂ C	\mathbf{D}_2	
LiCu ₂ O ₂ 1163 – 1323	,	.1.	-			
« ».	CuO	« . »			Li ₂ CO ₃	
4	LiCu ₂ O ₂	xCuO(1393	1-x)Li ₂ CO	3 c 0,7 0,5	7 x 5,	0,83
1323 ,		2,0	./		1173	,

3.2 -

,

,

LiCu₂O₂.

1173 (20 - 24),

,

,

.

,

LiCu₂O₂

1393

•

1323

~1173

 $LiCu_2O_2$ [. . 3.2.1].

LiCu₂O₂ (0,5–4) 8 8 ³ (. 3.2).

3.3.

LiCu₂O₂,

•

(001),

(210) (2-10),

{001}

{210}.

LiCu₂O₂,

,

(1-20). (120) (001) (. 3.3).

)

5,2 / ³.

(

,

LiCu₂O₂ 3.

,

$$Li_2CO_3$$
,

CuO, AgNO₃ ZnO « », « », « » « » « » ,

$$Li_2CO_3 \cdot 4(1-x)CuO \cdot 4xAgNO_3$$
,
 $Li_2CO_3 \cdot 4(1-x)CuO \cdot 4xZnO - I (1-x)Li_2CO_3 \cdot 2xZnO \cdot 4CuO - II 0 x 0,5$,
. -

$$LiCu_2O_2$$
.

LCO,

6

3.1.3.

,

LiCu₂O₂

•

LiCu₂O₂

,

,

~1113 40

		LiCu	3.1.
1			2
1	-		400
2	-		-
1			-
2			-
A4	-	40 . 1113	2 4 400
N3	_	1	1
W2	-	40 . 1113	-

1113

•

400

:

1-4 .

3.1

LiCu₂O₂

,

,

3.1.5.

,

(001), (210) (2-10) (.3.5).

In–Ga

,

3.5

,

,

3.2.

,

3.2.1

 1200°

,

LiCu₂O₂:

Q-1500D Pt-T = $-Al_2O_3.$ $LiCu_2O_2 \\$, , [90], T = 553 - 773LiCu₂O₂ Li₂CuO₂ CuO. Cu²⁺, Cu^+ (. 3.6) $LiCu^{2+}Cu^{+}O_{2}$ $LiCu_2O_2 (683) + O_2 \downarrow \rightarrow LiCu_3O_3 (783) + O_2 \downarrow + Li_2CuO_2 \rightarrow Li_2CuO_2 + CuO + O_2$ 1073-1223 LiCu₃O₃, LiCu₂O₂, $Li_{2}CuO_{2}(1108) + O_{2}\uparrow + CuO \rightarrow LiCu_{3}O_{3}(1163) + O_{2}\uparrow + Li_{2}CuO_{2} + \rightarrow LiCu_{2}O_{2}$,

LiCu₂O₂ (1163 < T < 1323),

•

LiCu₂O₂

1323 LiCu₂O₂.

(. 3.7).				: L	iCu ₂ O ₂
LiCu ₃ O ₃ ,					
(1323	1373)	(1163	1113
).				

1173 - 1323

 $Li(Cu,Zn)_2O_2$, 5 .% Zn

,

LiCu₂O₂; Li(Cu_{0,95}Zn_{0,05})₂O₂ (. 3.8) LiCu₂O₂ 5 Zn

:

 $\begin{array}{ccc} \text{Li}(\text{Cu},\text{Zn})_2\text{O}_2\ (673 \) & \textbf{\rightarrow} \text{Li}(\text{Cu},\text{Zn})_3\text{O}_3 + \text{Li}_2(\text{Cu},\text{Zn})\text{O}_2\ (723 \) & \textbf{\rightarrow} \ \text{Li}(\text{Cu},\text{Zn})\text{O}_2 + \\ & \text{CuO.} \\ \\ \text{Li}_2(\text{Cu},\text{Zn})\text{O}_2 + \text{CuO}\ (1087 \) + \text{O}_2 & \textbf{\rightarrow} \ \text{Li}(\text{Cu},\text{Zn})_3\text{O}_3 + \text{Li}_2(\text{Cu},\text{Zn})\text{O}_2\ (1176 \) + \\ \end{array}$

 $L_{12}(Cu,Zn)O_2 + CuO(1087) + O_2 \rightarrow L_1(Cu,Zn)_3O_3 + L_{12}(Cu,Zn)O_2(1176) + O_2 \rightarrow L_1(Cu,Zn)_2O_2.$

3.9.

, *t* –

LiCu₂O₂,

(DTA – , *m* – , *T* –

3.2.2.

,

•

LiCu₂O₂

).

LiCu₂O₂

(1320).

,

•

 $T_{PT} = 993$ (. 3.9).

DTA

DTA T = 983

DTA

,

3.3.

3.3.1

 $LiCu_2O_2$

5%

$$= 5,726(2), \ \boldsymbol{b} = 2,858(1), = 12,410(2) \text{ Å},$$

[52–54, 84] LiCu₂O₂.

LiCu₃O₃ CuO.

,

. 3.10.

-2.

72

(400)(020),

-2 (. 3.3.1).

ZnO

Zn

•

$$\label{eq:constraint} \begin{array}{ccc} LiCu_2O_2 \ - \ (Li,Zn)Cu_2O_2, \ Li(Cu,Zn)_2O_2\\ \\ Zn & Li \\ (Li,Zn)Cu_2O_2 & CuO, \end{array}$$

LiCu₃O₃.

3.3.2

,

,

3.3.2.1

Li О,

> . 3.11. Ag ,

 $Li_2CO_3 \cdot 4(1-x)CuO \cdot 4xAgNO_3$,

x = 0,25.Ag

,

.% 4
—

3.3.2.2

				3.2
			LiCu ₂ O ₂ ().
	%	%	% .,	
Li	4,0552	18,8013	20	
Cu	74,2941	37,6456	40	
0	21,5616	43,3606	40	
С	0,0605	0,1620		
Al	0,0129	0,0154		
Na	0,0032	0,0045		
Ca	0,0043	0,0034		
K	0,0017	0,0014		
Mg	0,0008	0,0011		
Si	0,0009	0,0010		
S	0,0010	0,0010		
Cl	0,0007	0,0007		
Fe	0,0010	0,0006		
Cr	0,0005	0,0003		
Mn	0,0005	0,0003		
В	0,0001	0,0002		
Р	0,0002	0,0002		

				3.3
			LiCu ₂ O ₂ ().
	%	%	% .,	
Li	4,0552	18,8013	20	
Cu	74,2941	37,6456	40	
0	21,5616	43,3606	40	
С	0,0605	0,1620		
Al	0,0129	0,0154		
Na	0,0032	0,0045		
Ca	0,0043	0,0034		
K	0,0017	0,0014		
Mg	0,0008	0,0011		
Si	0,0009	0,0010		
S	0,0010	0,0010		
Cl	0,0007	0,0007		
Fe	0,0010	0,0006		
Cr	0,0005	0,0003		
Mn	0,0005	0,0003		
В	0,0001	0,0002		
Р	0,0002	0,0002		

([Cu]/[Li]

$$2 - \frac{2}{(0)/[Li]} - \frac{2}{(2,2-2,3)} = 2 + \frac{2}{(2,2-2,3)} = 2 +$$

,

,

[92].

Ο.

,

Al

, 0,)

,

3.3.3	Ag Zn
4 (CuK –). , [56] LiCu ₂ O ₂ .	-
(108), (400), (216), (200) (004), (006) CELREF <i>a</i> , <i>b</i> , <i>c</i>	(204), (006), (210), (008),
(. 3.12).	Ag
<i>a c</i> ,	, b x = 0,25. x = 0,25
, , .% Ад	LiCu ₂ O ₂ 4
[93] (3.4),	,
,	,
LuCu ₂ O ₂ Cu ²⁺ Ag ²⁺ . (c/c x ~20%)	Li ⁺ c
Ag Li Cu (3.4).

. 3.4 Li^+, Cu^{n+} $Ag^{n+}, n = 1, 2$ (..) [93] 3 , = $[r(Ag^{n+})-r(C^{m+})]/r(C^{m+})$, n, m = 1, 2, 3 (, * -. . =5 . . = 4 . . =6, SQ –). . . 2 . . 4 . . 5 . .6 . . 8 $Li^{+}(1s^{2})$ 0,675 * 0,92 0,590 0,76 $Cu^{+}(3d^{10})$ 0,685 * 0,77 0,46 0,60 $Cu^{2+}(3d^9)$ 0.57 0.65 0.73 $Cu^{3+}(3d^8)$ 0,54 $Ag^{+}(4d^{10})$ 0.67 1.00 1.09 1.15 1.28 1,02 SQ $Ag^{2+}(4d^9)$ 0,79 SQ 0,865 * 0,94 $Ag^{3+}(4d^8)$ 0,67 SQ 0.705 * 0.74 (Ag^+-C^{n+}) $C^{n+} = Li^+$ 0,69 0,615 0,51 0,39 Cu^+ 0.46 0,67 0,59 0,49 Cu²⁺ 0,75 0,68 0,57 Cu^{3+} 1,13 $(Ag^{2+}-C^{n+})$ $C^{n+} = Li^+$ 0,34 0,28 0,24 \mathbf{Cu}^+ 0,32 0,26 0,22 Cu²⁺ 0,39 0,33 0,29 Cu^{3+} 0,74 $(Ag^{3+}-C^{n+})$ $C^{n+} = Li^+$ 0,135 0,04 -0,03 Cu^+ 0,12 0,03 -0.04 Cu^{2+} 0,175 0,08 +0,01

$$Ag^{2+}$$
 Li^+ ,

O ²⁻

1) Cu^{1+}

:
$$(Li^{+}_{1-u}Ag^{2+}_{u})Cu^{+}(Cu^{2+}_{1-v}Ag^{2+}_{v})O^{2-}_{2+d}$$
.

a, *b c*

= 0 - 0, 12,

-

3.12.

 $Li(Cu_{1-x}Zn_x)O_2.$

•

 $LiCu_2O_2$

> 0,12

(. 3.13).

c (

0

$$p(O_2) = 0,21$$

:

LiCu₂O₂.

0

		3.5
		, (crys_) –
		, (crys) –
		12,412(1)
A4	12,415(4)	12,413(5) (crys_1)
		12,412(1) (crys_2)
N3	12,418(1)	12,410(1)
W2	12,414(6)	12,412(6)

He₂.

,

,

,

•

(001)	LiCu ₃ O ₃ ,

•

(001) **ab**-

(. 3.15),

,

[210] [2-10]

,

3.15.

•

(a) () ().

,

,

(001) **ab**-

0

 Cu^+

S = 1/2.

Cu²⁺

Ο,

 $DC = 10 \qquad (T)$ $O_{,}() \qquad 1 (. 3.17). \qquad <400 \text{ K},$ $O_{,}() \qquad (),$

.

 CuO_2 .

. 3.18

180 - 400 .

,

(H = 10).

. (*T*) 148 124,7 2 2, ,

(*T*),

(T) H b 2 (8)

(FC, ZFC). $dM_c/dT \qquad 2,$

.

_N=24.7

,

LiCu₂O₂.

O (*H* 10) =150

3.4.2

0

Li₂O·4(1-x)CuO·4AgNO₃ c , 0 0,5, x 5 - 300M(T)(H= 20), ZFC (С FC ()). ZFC FC M(T)Т 37 = (. 3.20), T_{c1} T_{c2}

LiCu₂O₂

3.20. $Li(Cu_{1-x}Ag_x)_2O_2 = 0 (1), 0,05 (2) \quad 0,15 (3)$ 20.

dM(T)/dT.

M(T)

M(T) LiCu₂O₂ [68, 73, 94–97].

 $T_3 = 150$,

85, 90]. *T*₃

F

Ag (x > 0,05) $T_{c3} = 150$ (. 3.20).

 Li^{1+} Cu^{2+} Ag^{2+} .

x = 0,05,

LiCu₂O₂,

[69,

,

,

ZFC FC.

)

),

3.26.

, М1 *а, b, с*. 100 250 ()

LiCu₂O₂

tg (T) 4-295 . F: 0.1-100 . tg (T) $T = T_{max}$. . 3.25 tg (T) **b**

(1.39) [47]. ,
tg (T)
$$a, b, c,$$

, $lgf - 1/T_{max},$
(. 3.26).

 $f_{\rm o}$

,

<30 K

•

[52]:

tg max
$$(T^{-1}) \sim [(^{-1}).\exp(-Q_a/T)].$$

.3.27 2 / (T^{-1})
 T_{max} tg max (T^{-1}) E_{a} f_o Q_a .

3.5.2

.

200

,

(.3.30).

,

>>1

$$ab$$
 $_{N} = 24$ (
) $_{a}/k_{B} = 147,9$ $_{H}/2k_{B} = 31,4$ (. 3.31).

(.3.30).

$$\sim 300 \qquad {}_{b} = 10^{-2} (.)^{-1} \sim {}_{a} \sim 10^{*} {}_{c},$$

$$ab \qquad c E_{a} = 0.16$$

$$T_{o} = 0.97.10^{8} \qquad \sim 260 {}_{.} \qquad T \sim 230 \qquad E_{a} = 0.175 \qquad T_{o} = 3.60.10^{8} \qquad (. . 3.32a).$$

ab,

,

AC

(. 3.32).

3.33. DC

W2 ab $.T^{25/4}(T^{1/4}).$

$$3.5.2.3 \qquad W2$$

$$W2 \qquad T \sim 300 \qquad :$$

$$b = 2.10^{-2} (.)^{-1} \sim a \sim 10^{2} c.$$

$$DC$$

$$ab \qquad \sim 10^{-10} (.)^{-1}$$

$$m = 25/4$$
 $T_o = 6,75.10^7$ (. 3.33)

[35]
$$Li^+ Cu^{2+}$$

AC

< _N (. 3.34a).

ab,

,

DC

~300 ~100

ab,

tg max,

AC [35,

AC [35, 52, 99], ,

:

ab (. 3.35).

.

ab

 $T \sim 25 \text{ K}$

(. 3.36).

Ag (x = 0,05),

•

104

 $_{\rm AC}(T)$

•

 $Li(Cu_{1-x}Zn_x)_2O_2$

(

(. 3.39).

, . 3.39). Zn

 $Li(Cu_{1-x}Zn_x)_2O_2$ I, A (a) (б) Li(Cu_{1-x}Zn_x)₂O₂ x = 0,1 large cryst x=_0,075 = 0 U = 100 V, E||c X ຣ^{10⁷} -___10⁵ x = 0,1, 50K 0,008 x = 0,10x_= 0 ζ 10³ 0,000 <u>x = 0</u>,025 ¹⁰⁰ 7, K²⁰⁰ Ó 300 ¹⁰ V_{ob}, V 5 Ò 3.39.() $Li(Cu_{1-x}Zn_x)_2O_2$ $Li(Cu_{1-x}Zn_x)_2O_2,$.() (T)1 100 .

, S

1.	LiCu ₂ O ₂
	, , Li ₂ CuO ₂ -CuO _x
2.	- LiCu ₂ O ₂
$(Li,Ag)Cu_2O_2, Li(C)$	$u,Zn)_2O_2$,
3 10 10 .	
3.	, ,
LCO	12 .% Zn (
Cu) 4% Ag (Li).
4.	M(T),
,	
0	$LiCu_2O_2$ (H 10)
=150	$\mathbf{M}\parallel$.
0	
Ag	$(Li_{1-x}Ag_x)Cu_2O_2$
(<i>T</i> < 50),
	. x 0,05
150 ,	
5.	_ .
	LCO
4,2 - 300 0,1 - 10,0 .	
5.	, ~300

$$(= \exp(-E_a/kT), E_a = 0.35 - 0.44)$$

$$(= \exp(-T_o/T^{1/4}), T_o = 10^6 - 10^8 \text{ K}), 25$$

$$E = 5 - 6$$
.

$$\lg ~~1/T \qquad \qquad \qquad \lg ~~T^{1/4}.$$

5. LCO,

,
;
a: b: c=2:1:10⁴. (295).
5. (*T,f*) tg (*T,f*)
,
,
,
-
$$E_a=60 - 79$$
 K,

$$f_r=10^6$$
 $E_a=1300$ K, $f_r=2\cdot 10^8$ ()
(),

,

LiCu₂O₂ 6. Ag Zn : x > 0,05 ~3 x < 0,05 . ;

 $c \quad x \;\; > \;\; 0.05$

•

•

,

7. LCO

0

,
1 – 2

,

,

,

109

,

,

•

•

,

Morosan, E. Strongly correlated materials / E. Morosan, D. Natelson [et. al] // Adv. Mater. 2012. V. 24. – P. 4896–4923.

Izyumov Yu.A. Materials with strong electron correlations / Yu.A.
 Izyumov, E.Z. Kurmaev // Phys.-Usp. 2008. V. 51. – P. 23–56.

/	: t-J-				3.
		465–497.	.167. – 5.	// .1997.	
CuO ₂					4.
			,	/	

2011. . 37. - 3. - . 334-343.

5. Wollan E.O. Neutron diffraction study of the magnetic properties of the series of perovskite-tipe compounds $(La_xCa_{(1-x)})MnO_3 / E.O.$ Wollan, W.C. Koehler // Phys. Rev. 1955. V. 100. – 2. – P. 545-563.

6. Anokhin A.O. On the effect of strong electron correlations on various superconductivity mechanisms / A.O. Anokhin, V.Yu. Irkhin, M.I. Katsnelson // Physica C: Superconductivity. 1991. V. 179. – .1. – P. 167-175.

7. Bao J.-K. Superconductivity in quasi-one-dimensional $K_2Cr_3As_3$ with significant electron correlations / Bao J.-K., Liu J.-Y. [et. al] // Phys. Rev. X. 2015. V.5. – P. 011013 (6 pages).

8. Bednorz J.G. Perovskite-type oxides: the new approach to high-Tc superconductivity / J.G. Bednorz, .A.Muller // Rev. Mod. Phys. 1988.V. 60, – P. 585–600.

 Mills A.G. Lattice effects in magnetoresistive manganese perovskite / A.G. Mills // Nature. 1998.V. 392. – P. 147–150.

10. Metfessel S. Handbuch der Physic V. 18,- .1 / S. Metfessel, D.C. Mattis – Eds.: Wijn H.P.-Verlag, Berlin, Heidelberg: Springer. 1968. – 389 p.

11. Von Helmholt R. Giant negative magnetoresistance in perovskitelike $La_{2/3}Ba_{1/3}MnO_x$ ferromagnetic films / R. Von Helmholt, J. Wecker [et. al.] // Phys. Rev. Lett. 1993. V. 71, – P. 2331–2333.

12. Jin S. Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films / S. Jin, . Tiefel [et. al.] // Science.1994. V. 264, – 5157. – P. 413–415.

Shapira Y. Resistivity and Hall effect of EuSe in fields up to 150 kOe / Y.
 Shapira, S. Foner [et. al.] // Phys. Rev. 1974. V. 10. – P. 4765–4780.

14. Maekawa S. Physics of transition metal oxides / S. Maekawa, Tohyama, S.E. Barnes [et. al.]. – New York, USA: Springer, 2004. – 337 p.

15. Gruner G. The dynamics of charge-density waves / G. Gruner // Rev. Mod. Phys.1988. V. 60, - 4. - P. 1129–1181.

16. Gruner G. The dynamics of spin-density waves / G. Gruner // Rev. Mod. Phys. 1994. V. 66, -1, -P, 1-24.

17. Degiorgi L. Complete excitation spectrum of charge-density waves: Optical experiments on $K_{0,3}MoO_3$ / L. Degiorgi, B. Alavi, O. Mihali [et. al.] // Phys. Rev. B.1991. V. 44, - 15. – P. 7808–7819.

18. Maeda A. Switching of $K_{0.3}MoO_3$ at low temperatures. I. Response to the dc electric field / A. Maeda, M. Notomi, K. Uchinokura // Phys. Rev. B. 1990. V. 42. – 6. - P. 3290-3301.

19. Notomi M. Switching of $K_{0.3}MoO_3$ at low temperatures. II. ac conductivity in the highly conducting state / M. Notomi, A. Maeda, K. Uchinokura // Phys. Rev. B. 1990. V. 42. - 6. - P. 3302-3306.

Cava R. Dielectric response of the charge-density wave in K_{0.3}MoO₃ / R.J.
 Cava, R.M. Fleming, P. Littlewood [et. al.] // Phys. Rev. B. 1984. V. 30. – 6. – P.
 3228–3239.

 Kim C. Separation of spin and charge excitations in one-dimensional SrCuO₂ / C. Kim, Z.-X. Shen, N. Motoyama [et. al.] // Phys.Rev. B. 1997. V. 56. – 24. – P. 15589–15595.

22. Taguchi Y. Dielectric breakdown of one-dimensional Mott insulators
Sr₂CuO₃ and SrCuO₂ / Y. Taguchi, T. Matsumoto, Y. Tokura // Phys. Rev. B. 2000. V.
62. – 11. – P. 7015–7018.

23. Azuma M. Switching of the gapped singlet spin-liquid state to an antiferromagnetically ordered state in $Sr(Cu_{1-x}Zn_x)_2O_3 / M$. Azuma, Y. Fujishiro, M.

Takano [et. al] // Phys. Rev. B. 1997. V. 55. – 14. – P. R8658–R8661.

24. Vuletic T. The spin-ladder and spin chain system (La,Y,Sr,Ca)₁₄Cu₂₄O₄₁: electronic phases, charge and spin dynamics / T. Vuletic, B. Korin-Hamsic, T. Ivek [et. al] // Physics Reports. 2006. V. 428. – P. 169–258.

25. Lee P. A. Doping a Mott insulator: Physics of high-temperature superconductivity / P. A. Lee, N. Nagaosa, X.-G. Wen // Rev. Mod. Phys. 2006. V. 78,
- 1. – P. 17–85.

Kou S.-P. Self-localization of holes in a lightly doped Mott insulator / S.P. Kou, and Z.-Y. Weng // Eur. Phys. J. B. 2005. V. 47, – P. 37–46.

27. Kou S.-P. Holes as dipoles in a doped antiferromagnet and stripe instabilities / S.-P. Kou, and Z.-Y. Weng // Phys. Rev. B. 2003. V. 67, – 14. – P. 115103 (10 pages).

28. Kivelson S. A. How to detect fluctuating stripes in the high-temperature superconductors / S.A. Kivelson, I.P. Bindloss, E. Fradkin [et. al] // Rev. Mod. Phys. 2003. V. 75, - 10. – P. 1201–1241.

29. Emin David. Current-driven threshold switching of a small polaron semiconductor to a metastable conductor / David Emin // Phys. Rev. B 2006. V. 74. – P. 035206 (10 pages).

 30.
 .
 .
 .
 .

 . 1967. - 492
 .
 .
 .
 .

 31.
 .
 .
 .
 .
 .

32. Emin D. Adiabatic Theory of an Electron in a Deformable Continuum
/ D. Emin and T.Holstein // Phys. Rev. Lett. 1976. V. 36, - 6. – P. 323 – 326.

33. Petukhov A.G. Bound magnetic polaron hopping and giant magnetoresistance in magnetic semiconductors and nanostructures / A.G. Petukhov, and M. Fogel // Phys. Rev. B. V.62, - 1, -P.520-531

34. Emin D. Low-temperature ac conductivity of adiabatic small-polaronic hopping in disordered systems / D. Emin // Phys. Rev. B. 1992. V. 46. – P. 9419–9427.

35. Iguchi E. Polaronic conduction in n-type $BaTiO_3$ doped with La_2O_3 or Gd₂O₃ / E. Iguchi, N. Kubota, T. Nakamori, K.J. Lee. // Phys. Rev. B. 1991.V. 43. – P. 8646-8649.

36. Thomas P. Low Temperature Polaronic Hopping Conduction / P. Thomas and D. Wuertz // Phys. stat. sol. (b). 1978. V. 86. – P. 541–548.

Laiho R. Variable-range hopping conductivity in $La_{1-x}Ca_xMn_{1-y}Fe_yO_3$: 37. evidence of a complex gap in density of states near the Fermi level / R. Laiho, K.G.Lisunov, E. Lahderanta, [et. al.] // J. Phys.: Condens. Matter. 2002. V. 14. – P. 8043-8055.

38. Lago J. Non-adiabatic small polaron hopping in the n = 3 Ruddlesden-Popper compound Ca4Mn3O10 / J. Lago, P.D. Battle, M. J. Rosseinsky [et. al] // J. Phys.: Condens. Matter. 2003. V. 15. – P. 6817 (29 pages).

39. Naikt I.K. Small-polaron mobility in nonstoichiometric cerium dioxide / I.K. Naikt, T.Y. Tien // J. Phys. Chem. Solids. 1978. V. 39. – P. 311–315.

40. Banerjee A. Adiabatic and non-adiabatic small-polaron hopping conduction in $La_{1-x}Pb_{x}MnO_{3+}$ (0,0 0,5)-type oxides above the metal-Х semiconductor transition / A. Banerjee1, S. Pal [et. al] // J. Phys.: Condens. Matter. 2001. V. 13. – P. 9489.

41. Yildiz A. Non-adiabatic small polaron hopping conduction in Nb-doped TiO₂ thin film / A. Yildiz, S.B. Lisesivdin [et. al] // Physica B: Condensed Matter. 2009. V. 404. – 8–11. – P. 1423–1426.

42. Ghosh A. Transport mechanism in semiconducting glassy silicon vanadates / A. Ghosh // Journal of Applied Physics 1993. V. 74. – P. 3961–3965.

. .

43.

. –

/ . . . – : . • • • . 1979. – 416 . 44. • , . . . - : . . 1982. - 658 . - 2 . 2-/ . 45. . / 2005. – 232 . :

46. Böttger H. Hopping conductivity in ordered and disordered solids / H. Böttger, V.V. Bryksin // Phys Status Solidi (b). 1976. V. 78. – P. 9–56.

47. Elliott S.R. A.c. conduction in amorphous chalcogenide and pnictide semiconductors / S.R. Elliott // Adv. Phys. 1987. V. 36. – 2. – P. 135-217.

 Foygel M. Variable-Range Hopping of Spin Polarons: Magnetoresistance in a Modified Mott Regime / M. Foygel, R. D. Morris, A. G. Petukhov // Phys. Rev. B.
 2003. V. 67. – P. 134205 – 134226.

49. Mott N.F. Conduction in glasses containing transition metal ions / N.F. Mott // Journ. non-cryst. Solids. 1968. V. 1. – P. 1–17.

50. . . $La_{1-x}Sr_xMn_{1-y}Fe_yO_3$ /

:

, R. Laiho, A.V. Lashkul [.] // . 2011. - 11(106). .23. – C.24–43.

. .

51. Long A.R. Frequency-dependent loss in amorphous semiconductor / A.R.
Long // Adv. Phys. 1982. V. 31. – 5. – P. 553–637.

52. Dominik L.A.K. Dielectric relaxations in reduced rutile (TiO_{2-x}) at low temperatures / L.A.K. Dominik, R.K. MacCrone // Phys. Rev. 1967. V. 163. – P. 756–768.

53. Klein R. J. Modeling electrode polarization in dielectric spectroscopy: Ion mobility and mobile ion concentration of single-ion polymer electrolytes / R.J. Klein, S. Zhang, S. Dou [et. al.] // J. Chem. Phys. 2006. V. 124, – P. 144903.

54. Van Houten S. Transition Metal Compounds 2nd ed. edited by E. R. Schatz, Gordon and Breach / S. Van Houten, A.J. Bosman // New York, 1968. – 123 p.

55. Hibble J. LiCu₂O₂ and LiCu₃O₃: new mixed valent copper oxides / J. Hibble, J. Kohler [et. al.] // J. Solid State Chem. 1990. V. 88. – 2. - P. 534-542.

56. Berger R. The structure of $LiCu_2O_2$ with mixed-valence copper from twin-crystal data / R. Berger, A. Meetsma, S. Smaalen [et. al.] // J. Less-Common Metals. 1991. V. 175. – 1. – P. 119–129.

57. Berger R. A note on Li-Cu-O system / R. Berger // J. Less-Common Metals. 1991. V. 169. – 1. – P. 33–43. 58. Berger R. Structure refinements of $LiCu_2O_2$ and $LiCu_3O_3 / R$. Berger, O. Onnerud, R. Tellgren // J. Alloys and Compounds. 1992. V. 184. – 2. – P. 315–322.

59. Zatsepin D.A. Valence states of copper ions and electronic structure of LiCu₂O₂ / D. A. Zatsepin, V. R. Galakhov, M. A. Korotin [et. al.] // Phys. Rev. B. 1998.
V. 57. - 8. – P. 4377–4381.

60. Fritschij F.C. NMR and susceptibility characterization of two oxocuprates with antiferromagnetic Cu-chains: $LiCuO_2$ and $LiCu_2O_2 / F.C.$ Fritschij, H.B. Brom, R. Berger // Solid State Com. 1998. V. 107, – P. 719–723.

. .

61.

62. Zvyagin S. Dimer liquid in the quantum antiferromagnet compound LiCu₂O₂ / S. Zvyagin, G. Cao, Y. Xin [et. al.] // Phys. Rev. B. 2002. V. 66. – 6. – P. 064424 (5 pages).

63. Choi K.Y. Coexistence of dimerization and long-range magnetic order in the frustrated spin-chain system LiCu₂O₂: Inelastic light scattering study / K.Y. Choi, S.A. Zvyagin [et. al.] // Phys. Rev. B. 2004. V. 69. – P. 104421 (5 pages).

64. Roessli B. Magnetic phase transitions in the double spin-chains compound LiCu₂O₂ / B. Roessli, U. Staub, A. Amato [et. al.] // Physica. B. 2001.
V. 296. - 4. - P. 306-311.

65. Wang K.F. Multiferroicity, The coupling between magnetic and polarization / K.F. Wang, J.-M. Liu, Z.F. Ren // Adv. Phys. 2009. V. 58. – .4. – P. 321–448.

66. Masuda T. Spin waves and magnetic interactions in LiCu₂O₂ / T. Masuda,
A. Zheludev, B. Roessli [et. al.] // Phys. Rev. B. 2005. V. 72. – 1. – P. 014405 (7 pages)

67. Gippius A.A. NMR and local-density-approximation evidence for spiral magnetic order in the chain cuprate $LiCu_2O_2$ / A.A. Gippius, E.N. Morozova, A.S. Moskvin [et. al.] // Phys. Rev. B. 2004. V. 70. – 2. – P. 020406 (4 pages)

68. Rusydi A. Multiferroicity in the spin-1/2 quantum matter of $LiCu_2O_2 / A$. Rusydi, I. Mahns, S. Müller [et. al.] // Appl. Phys. Lett. 2008. V. 92. – 26. – P. 262506 (3 pages).

69. Park S. Ferroelectricity in an S=1/2 chain cuprate / S. Park, Y.J. Choi, C.L. Zhang [et. al.] // Phys. Rev. Lett. 2007. V. 98. – 5. – P. 057601 (4 pages).

70. Hsu H.C. Disrupted long range spin-spiral ordering and electric polarization in the Zn-substituded quantum helimagnet $LiCu_{2-x}Zn_xO_2$ / H.C. Hsu, J.-Y. Lin [et. al.] // Phys. Rev. 2010. V. B81. – 21. – P. 212407 (4 pages).

71. Huang S.W. Magnetic Ground State and Transition of a Quantum Multiferroic $LiCu_2O_2 / S.W.$ Huang, D.J. Huang, J. Okamoto [et. al.] // Phys. Rev. Lett. 2008. V. 101. – 7. – P. 077205 (4 pages).

72. Seki S. Correlation between spin helisity and an electric polarization vector in quantum-spin chain magnet LiCu_2O_2 / S. Seki, Y. Yamasaki, M. Soda [et. al.] // Phys. Rev. Lett. 2008. V. 100. – 12. – P. 127201 (4 pages).

73. Yasui Y. Studies of multiferroic system $LiCu_2O_2$: I. Sample characterization and relationship between magnetic properties and multiferroic nature / Y. Yasui, K. Sato [et. al.] // J. Phys. Soc. Japan. 2009. V. 78. – 8. – P. 084720 (5 pages).

74. . Kobayashi Y. Studies of multiferroic system $LiCu_2O_2$: II. Magnetic structures of two ordered phases with incommensurate modulations / Y. Kobayashi, K. Sato, Y. Yasui [et. al.] // J. Phys. Soc. Japan. 2009. V. 78. – 8. – P. 084721 (5 pages).

75. Qin M.H. Does ferroelectric polarization in $LiCu_2O_2$ uniquely originate from spiral spin order? / M.H. Qin,Y.J. Guo [et. al.] // J. Appl. Phys. 2009. V. 105. – 7. – P. 07D908 (3 pages).

76. Fang C. Magnetoelectric coupling in the multiferroic compound LiCu_2O_2 / C. Fang, T. Datta, J. Hu // Phys. Rev. B. 2009. V. 79. – 1. – P. 014107 (11 pages).

77. Huang D.-J. Magnetic transitions of multiferroic frustrated magnets revealed by resonant soft x-ray magnetic scattering / D.-J. Huang, J. Okamoto, S.-W. Huang [et. al.] // J. Phys. Soc. Japan. 2010. V. 79. -1. - P. 011009 (9 pages).

78. Hsu H.C. Disrupted long range spin-spiral ordering and electric polarization in the Zn-substituded quantum helimagnet $LiCu_{2-x}Zn_xO_2$ / H.C. Hsu, J.-Y. Lin, W.L. Lee [et. al.] // Phys. Rev. 2010. V. B81. – 21. – P. 212407 (4 pages).

82. Balbashov A.M. Apparatus for growth of single crystals of oxide compounds by floating zone melting with radiation heating / A.M. Balbashov, S.K. Egorov // J. Cryst. Growth. 1981. V. 52. Part 2. – P. 498–504.

. .

83.

:

//

84.

/ . . , . . , . [. 1981. – 480 C.

)/...,..

 $M_{1-x}R_{x}F_{2+x} (M=Ca, Sr, Ba; R$

.]

, . .

_

~

. 1986. . 31. – 1. – . 146–152.

85. Cima M.J. Influence of growth parameters on microstructure of directionally solidified $Bi_2Sr_2CaCu_2O_y$ / M.J. Cima, X.P. Jiang, H.M. Chow [et. al.] // J. Mater. Res. 1990. V. 5. – 5. – P. 1834–1849.

86.

~

». , 2010. – 0968. – 40 .

87.

88. Powder diffraction files of the International Centre for Diffraction Data (ICDD). 1999.

89. Basic Demonstration of CELREF Unit-Cell refinement software on a multiphase system []. – : <u>http://www.ccp14.ac.uk/tutorial/lmgp/celref.htm.</u> – . – (:23.06.2015).

90.

$$LiCu_2O_2$$
 / . . , . . , .

, . . , M. Ottosson, R. Mathieu, P. Nordblad // . 2013. .14. – 2(8). . 371–378.

. .

91. Parfionov O.E. Influence of structural changes on electronic states in the 1–2–3 HTSC system / O.E. Parfionov and A.A. Konovalov // Physica C, 1992, V. 202, – P. 385–392.

92. Fratini M. Scale-free structural organization of oxygen interstitials in La_2CuO_{4+y} / M. Fratini, N. Poccia [et. al.] // Nature. 2010. V. 466, – P. 841–844.

93. Shannon R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides / R.D. Shannon // Acta Cryst.
1976. V. A32. – 5. – P. 751–767.

94. Hsu H.C. Nonmagnetic impurity perturbations in the quasi-twodimensional helimagnet LiCu_2O_2 / H.C. Hsu, J.-Y. Lin, W.L. Lee [et. al.] // Phys. Rev. B 82, – P. 094450 (13 pages).

95. Tishchenko E.A. Spontaneous magnetization and antiferromagnetic correlations in low-dimensional quantum (S=1/2) single crystal $LiCu_2O_{2+}$ / E.A.

Tishchenko, O.E. Omelyanovskii, A.V. Sadakov [et. al.] / Solid State Phenomena. 2011. V. 168–169. – P. 497–500.

96. Bush A.A. Magnetic structure of the frustrated S = 1/2 chain magnet LiCu₂O₂ doped by nonmagnetic Zn / A.A. Bush, N. Büttgen, A.A. Gippius [et. al.] // Phys. Rev. 2013. V. 88. – 10. – P. 104411 (9 pages).

97. Ivanov S.A. Temperature evolution of structural and magnetic properties of stoichiometric LiCu₂O₂: Correlation of thermal expansion coefficient and magnetic order / S.A. Ivanov, P. Anil Kumar, R. Mathieu [et. al.] // Solid State Sciences. 2014. V. 34. – 1. – P. 97–101.

98. Foygel M. Bipolaron ac conductivity in amorphous semiconductors and dielectrics / M. Foygel, A.G. Petukhov, A.S. AndreyeV. // Phys. Rev. B. 1993. V. 48. – P. 17018–17030.

99. Jung W.H. Polaronic transport properties in La_{1-x}Sr_xFeO₃ systems
(0,05 x 0,3) / W.H. Jung, E. Iguchi // J. Phys.: Condens. Matter. 1995. V. 7. –
6. – P. 1215–1227.