ПЕРЕСАДИ СЕРГЕЙ СЕРГЕЕВИЧ

Разработка технологии извлечения благородных металлов из медномагнетитовых золотосодержащих концентратов Быстринского месторождения

Специальность 05.16.02 – «Металлургия черных, цветных и редких металлов»

Автореферат диссертации на соискание ученой степени кандидата технических наук

Работа выполнена в Федеральном государств профессионального образования «Национальные верситет «МИСиС»	енном образовательном учреждении высшего ный исследовательский технологический уни-
Научный руководитель: доктор технических наук, профессор	Стрижко Леонид Семенович
Официальные оппоненты: доктор технических наук, профессор	Задиранов Александр Никитович
кандидат технических наук	Лайкин Сергей Анатольевич
Ведущая организация:	ФГУП «Институт «ГИНЦВЕТМЕТ»
диссертационного совета Д.212.132.05 при Фе	011 г. в 14:30 в аудитории К-214 на заседании едеральном государственном образовательном разования «Национальный исследовательский ресу: 119991, г. Москва, Крымский вал, д. 3.
С диссертационной работой можно ознакомит исследовательский технологический университе	ться в библиотеке ФГОУ ВПО «Национальный гет «МИСиС»
Автореферат разослан « 23 » марта 2011 г.	
Ученый секретарь диссертационного совета	Лобова

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы

Значительная часть золотого потенциала Российской Федерации находится в отдаленных районах Сибири и Дальнего Востока, и его реализация сопряжена с большими инвестиционными рисками, экологическими проблемами, что сказывается на себестоимости, достигающей порой закупочной цены Центробанка.

Россия, единственная из стран – основных производителей золота – получает более половины его из россыпей. В то же время сырьевая база россыпного золота истощена, ухудшились горно-геологические показатели, возросли издержки производства. В настоящее время прирост золотодобычи, в основном, производится за счет мелких по запасам участков россыпных месторождений. Об этом свидетельствует структура разведанных запасов, где все большую долю за последние годы составили сначала средние, а затем мелкие месторождения.

В этих условиях одним из путей увеличения сырьевой базы золота является вовлечение в переработку комплексных золотосодержащих руд преимущественно полиметаллических и медных месторождений, примером которых является Быстринское месторождение Забайкальского края.

Из всех известных способов переработки медных золотосодержащих концентратов наиболее подходящим является пирометаллургический метод, суть которого заключается в плавке предварительно обожженных золотосодержащих концентратов на медный коллектор. В ранее проведенных исследованиях процесса плавки золотосодержащих концентратов на коллектор показано, что на степень извлечения золота существенное влияние оказывает количество добавляемого металла-коллектора. Медь, используемую в качестве коллектора, по причине ее отсутствия в исходном сырье, добавляют извне. Установлено, что существует оптимум количества меди, при котором дальнейшее его увеличение не приводит к заметному повышению извлечения золота.

Особенностью Быстринского месторождения является наличие в руде большого количества меди, которая может быть использована в качестве коллектора, что требует проведения исследований условий осуществления процесса при формировании коллектора в процессе восстановительной плавки.

Учитывая, что в процессе плавки образуется большое количество шлаков (150 - 200 % по отношению к огарку), возможны значительные потери с ними золота и серебра. Поэтому возникает необходимость изучения причин потерь благородных металлов со шлаками, а также влияния основных шлакообразующих компонентов (Na_2O , CaO, SiO_2) на поведение золота и серебра в процессе плавки.

Работа выполнена в рамках Государственного контракта № 02.527.12.90.11. «Разработка и опытно-промышленные испытания технологий освоения минеральных ресурсов Сибирского и Дальневосточного регионов».

Цель работы

Разработка эффективной технологии восстановительной плавки на медный коллектор, позволяющей повысить извлечение благородных металлов.

Для достижения поставленной цели решались следующие задачи:

- провести экспериментальные исследования процессов окислительного обжига концентратов «намертво» и восстановительной плавки на медный коллектор, по результатам которых определить оптимальные условия ведения процессов;
- изучить закономерности влияние состава шлака на степень извлечения меди и благородных металлов в процессе плавки на медный коллектор;
- выявить связь между вязкостью и плотностью шлаковых систем и распределением меди и благородных металлов между шлаком и коллектором в процессе плавки;
- построить термодинамическую модель процесса восстановительной плавки на медный коллектор, позволяющую прогнозировать извлечение благородных металлов и меди в коллектор при изменении состава сырья, температуры плавки, коэффициента избытка кислорода (α);
- разработать экономически эффективную технологическую схему извлечения благородных металлов из сульфидных золотосодержащих концентратов методом плавки на медный коллектор, направленную на рациональное использование не только благородных металлов, но и других полезных компонентов.

Методы исследования

При исследовании закономерностей распределения благородных металлов между продуктами восстановительной плавки применялась методика окислительного обжига концентратов в муфельной печи с механическим перегребанием и тигельной плавки концентрата в присутствии твердого углерода в изотермических условиях. При подготовке материалов к плавкам и анализе полученных результатов использовался метод химического анализа проб спектральным эмиссионным методом (масс-спектрометр с индуктивно-связной плазмой (ICP-MS) SPECTRO CIROS VISION), метод газового хроматографического анализа, оптическая микроскопия (оптический микроскоп Carl Zeiss Observer-Z1m), а также методы минера-

логического и ситового анализа. Для проведения экспериментов использовано лабораторное оборудование: муфельные, шахтные и камерные нагревательные электрические печи.

Изучение плотности и вязкости шлаковых расплавов проводилось с применением методик максимального давления в газовом пузыре и ротационной методики измерения вязкости с использованием цифрового вискозиметра Brookfield DV-III+. Изучение закономерностей распределения благородных металлов между продуктами плавки при изменении условий проведения процесса в широком интервале проводилось с применением методик термодинамического моделирования процесса плавки.

Научная новизна работы

- 1. Установлены закономерности влияния флюсующей добавки Na_2O на распределение меди и благородных металлов в процессе плавки на медный коллектор, выражающиеся в снижении потерь за счет уменьшения вязкости и плотности шлакового расплава, на основе чего предложена четырехкомпонентная система FeO- SiO_2 - Na_2O -CaO, обладающая низкими температурой плавления и вязкостью.
- 2. Создана термодинамическая модель процесса восстановительной плавки обожженных золотосодержащих медных концентратов, позволяющая прогнозировать извлечения благородных металлов и меди в коллектор при изменении важнейших технологических параметров: состава сырья, температуры плавки, коэффициента избытка кислорода (α), что делает ее весьма удобным инструментом для общего анализа процесса восстановительной плавки золотосодержащего огарка; рассчитывать количества основных флюсующих компонентов: $CaCO_3$, SiO_2 и Na_2CO_3 , для получения шлака требуемого состава.

Практическая значимость работы

- 1. На основании исследований влияния компонентов шлаковой системы FeO- SiO_2 - Na_2O -CaO на потери меди и благородных металлов со шлаками при плавке медных золото-содержащих концентратов на медный коллектор разработан шлак, содержащий (%): $10.7\ Na_2O$, $18.5\ CaO$, $37.5\ SiO_2$, $30.3\ FeO$, имеющий вязкость при температуре плавки $1523\pm20\ K$ $0.11\ \Pia\times c$, использование которого позволило снизить потери меди со шлаками до 0.5% при извлечении золота и серебра в коллектор 99.3 и 98.5% соответственно.
- 2. На основании экспериментальных данных и установленных зависимостей полноты удаления серы от температуры и продолжительности обжига, а также распределения благородных металлов между коллектором и шлаком от содержания основных шлакообразующих компонентов (SiO_2 , Na_2O , CaO), расхода восстановителя и температуры плавки оптимизированы режимы процессов окислительного обжига концентратов «намертво» и плавки огарка

на медный коллектор: температура обжига -1023 K, время -1 час, температура плавки -1573 ± 20 K, время плавки -1,5-2 ч., соотношение концентрат:восстановитель -10:1.

3. Разработана принципиальная технологическая схема переработки медных золотосодержащих концентратов Быстринского месторождения, методом плавки на медный коллектор, которая прошла опытно-промышленную проверку в ЗАО «Приморская горнорудная компания «Восток». Переработано 4 тонны концентрата, и получено 829 кг черновой меди, содержащей 796 г золота и 2747 г серебра. Результаты испытаний подтвердили правильность и эффективность выявленных в ходе экспериментальных исследований условий окислительного обжига «намертво» и плавки на медный коллектор. При данных условиях извлечение золота и серебра в коллектор составляет 99,2 и 98,1 % соответственно. Получаемые шлаки содержали не более 0,5 % *Си*, что позволяет считать их отвальными.

Апробация работы

Основные положения и результаты доложены на российских и международных конференциях: 63, 64 научная конференция студентов МИСиС, г. Москва (2008 – 2009 гг.); Международная научно-практическая конференция «Металлургия цветных металлов. Проблемы и перспективы», г. Москва (2009 г.); VIII-я Международная конференция «Ресурсовоспроизводящие, малоотходные и природоохранные технологии освоения недр», г. Таллинн, Эстонская Республика, (2009 г.), VII-я Международной конференции «Ресурсовоспроизводящие, малоотходные и природоохранные технологии освоения недр» г. Ереван, Республика Армения, (2009 г.).

Публикации

По результатам работы опубликованы две статьи в рецензируемом журнале, рекомендованном ВАК, 5 тезисов докладов в материалах научных конференций.

Структура и объем работы

Диссертационная работа состоит из введения, 5 глав, выводов, списка литературы и приложения. Диссертация изложена на 152 страницах, содержит 13 таблиц, 59 рисунков, список литературы, включающий 83 наименования.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы диссертации, сформулирована цель работы, изложены основные положения, выносимые на защиту.

В первой главе представлен аналитический обзор литературных данных по теме исследований, в котором рассмотрены характеристики гравитационных и флотационных золотосодержащих концентратов и основные способы их переработки.

Анализ литературных данных показал, что наибольшая эффективность извлечения благородных металлов с получением продуктов, пригодных для аффинажного производства, достигается при использовании пирометаллургических технологий переработки золотосодержащих концентратов, основанных на коллекторных и бесколекторных плавках, в процессе которых происходит концентрирование благородных металлов в расплавленных коллектирующих фазах (99,8 – 99,9 %).

По сути, деление плавок на коллекторные и бесколлекторные является условным, так как в обоих случаях процесс идет с образованием донной фазы, выполняющей функции коллектора благородных металлов. В соответствии с законом распределения, при прочих равных условиях, увеличение количества донной фазы приводит к повышению сквозного извлечения в нее благородных металлов. Соответственно, применение дополнительных материалов-коллекторов преследует цель увеличить количество донной фазы для более полного извлечения благородных металлов в основной продукт. В первую очередь, такой подход видится оправданным для переработки концентратов, в результате плавки которых образуется небольшое количество донной фазы (например, бедных обожженных концентратов, содержащих малое количество оксида меди). Плавка необожженных медных концентратов на штейн связана с дополнительными трудностями, обусловленными необходимостью извлечения из штейна как благородных металлов, так и меди. С этих позиций, более перспективным можно признать способы плавки обожженных концентратов на черновой металл.

Учитывая вышеизложенное, для переработки золотосодержащих сульфидных медных флотационных концентратов с содержанием меди на уровне $20-30\,\%$ с целью извлечения благородных металлов оправданным видится применение технологической схемы с предварительным окислительным обжигом и последующей восстановительной плавкой. Образующегося в процессе плавки количества донной фазы (черновой меди) будет достаточно для обеспечения хороших показателей по извлечению благородных металлов. Также необходимо отметить, что данная технология наряду с золотом и серебром, позволяет извлечь металлы платиновой группы, которые не извлекаются существующими гидрометаллургическими методами.

В обзоре также рассмотрены теоретические основы процессов окислительного обжига сульфидных золотосодержащих концентратов и восстановительной плавки огарков; механизмы восстановления оксидов в присутствии твердого углерода; формы потерь благородных и цветных металлов со шлаками. Приведен обзор исследований, направленных на изу-

чение влияния химического состава шлаковых расплавов на их плотность и вязкость при различных температурах, а также обзор общих методов и конкретных работ по математическому моделированию металлургических систем.

В результате проведенного аналитического обзора выявлено, что исследований по изучению влияния основных шлакообразующих компонентов (SiO_2 , Na_2O , CaO) на распределение благородных металлов между конденсированными фазами в процессе восстановительной плавки медных золотосодержащих концентратов не проводилось и имеющихся в литературе данных для разработки эффективной и экологически безопасной технологии извлечения благородных металлов не достаточно.

На основе проведенного анализа сформулированы основные задачи исследований настоящей работы.

Во второй главе приведены результаты исследований химического и минералогического составов медных флотационных золотосодержащих концентратов Быстринского месторождения, а также процесса окислительного обжига концентратов «намертво», при которых удастся наиболее полно выжечь серу, избежав спекания материала.

В таблице 1 приведен химический состав концентрата, используемого в работе.

Таблица 1 – Химический состав медного концентрата Быстринского месторождения

Компонент	Содержание, %						
Си, в т.ч.	20,84						
Си(окисл)	1,44						
Си _(втор.сульф.)	5,00						
Си(перв.сульф.)	14,40						
Fe _(общ.)	27,00						
Fe _(сульф.)	21,42						
Fe_2O_3	7,98						
S	30,00						
Zn	0,09						
Pb	0,13						
Bi	0,01						
Mo	0,11						
SiO_2	16,45						
Al_2O_3	0,79						
Na ₂ O	0,21						
CaO	0,03						
MgO	0,26						
P_2O_5	0,02						
MnO	0,52						
K_2O	0,12						
TiO ₂	0,04						
Au	20 г/т						
Ag	70 г/т						
Прочие	3,41						
Итого	100,00						

Преобладающим минералом руд является халькопирит (таблица 2). Халькопирит дает сростки с пиритом, магнетитом, лимонитом и окисленными минералами меди. Почти полностью освобождается от срастания с магнетитом при крупности — 0,045 мм, с лимонитом и окисленными минералами меди сростки сохраняются даже в мелких классах (6-7% включений). Ковеллин встречается в ассоциации с лимонитом и халькопиритом, размер зерен — 0,05 мм, выход его составляет 3 %. Куприт встречается в виде тонких сростков в лимоните. Содержание его не превышает 1 %. Выход магнетита составляет 1-2%, размер зерен 0,05 мм. Молибденит представлен чешуйками размером от $0,1\times0,02$ мм (медный концентрат перед доводкой) до $0,01\times0,002$ мм (медный концентрат после доводки), содержание его 0,1-0,5%. Встречается как в виде свободных зерен, так в сростках с нерудными, частично с халькопиритом.

Таблица 2 – Фазовый состав медного концентрата Быстринского месторождения

Минеральная фаза	Химическая формула	%
Халькопирит	CuFeS ₂	31,40
Ковеллин	CuS	5,31
Халькозин	Cu ₂ S	6,26
Куприт	Cu ₂ O	1,62
Пирит	FeS ₂	25,49
Гематит	Fe_2O_3	7,98
Молибденит	MoS_2	0,18
Сфалерит	ZnS	0,13
Галенит	PbS	0,14
Висмутин	$\mathrm{Bi}_2\mathrm{S}_3$	0,01
Магнезит	$MgCO_3$	0,54
Известняк	CaCO ₃	0,05
Кварц	SiO ₂	16,45
Прочие		4,44
Итого		100,00

Установлено, что с увеличением температуры и продолжительности процесса обжига остаточное содержание серы в огарке снижается (рисунок 1).

Достичь наименьшего остаточного содержания серы (2,25 %) и не допустить спекания материла удается при температуре обжига 973 K уже за 1 час ведения процесса.

При температурах, превышающих 1073 – 1173 K, возможно частичное оплавление огарка вследствие образования относительно легкоплавких эвтектических смесей, состоящих из пирротина и магнетита, силикато- и ферритообразований.

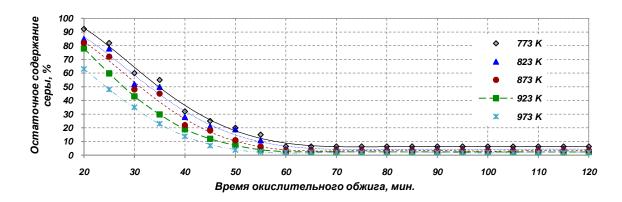


Рисунок 1 – Зависимости содержания серы в огарке от температуры и времени обжига

Предварительные опыты по восстановительной плавке показали, что оставшаяся в огарке сера (2,25 %) приводит к образованию штейна, близкого по составу к белому мату – Cu_2S . С целью предотвращения образования штейна обжиг проводили при 1023 К в течение 60 минут. В таблице 3 представлен рациональный состав полученного огарка.

Таблица 3 – Рациональный состав огарка, полученного в результате обжига концентрата в муфельной печи при температуре 1023 К

Компонент, 🤋	⁄₀Cu₂S	Cu ₂ O	FeO	Fe ₃ O₄	Fe ₂ O ₃	ZnO	PbO	Bi ₂ O ₃	MgO	CaO	SiO ₂	AI_2O_3	P_2O_5	Na ₂ O	MnO ₂	Au	Ag	Прочие	Опого
Cu	0,04	23,16	_	-	-	_	_	-	_	_	-	_	_	_	_	-	-	_	23,20
Fe	_	_	0,35	0,35	34,20	_	_	_	_	_	_	_	_	_	_	_	_	_	34,90
S	0,01	1	_	-	_	_	_	_	-	_	_	-	_	-	-	-	_	_	0,01
Zn	-	1	_	-	_	0,21	_	_	-	_	_	-	_	-	-	-	_	_	0,21
Pb	_	1	_	-	_	_	0,28	_	_	_	_	_	_	_	_	-	_	_	0,28
Bi	_	1	_	-	_	_	_	0,01	_	_	_	_	_	_	_	-	_	_	0,01
SiO ₂	_	-	I	_	-	_	-	-	-	-	24,60	-	ı	-	_	-	-	_	24,60
Al ₂ O ₃	_	-	I	_	-	_	-	-	-	-	_	0,60	ı	-	_	-	-	_	0,60
Na₂O	_	1	_	-	_	_	_	_	_	_	_	_	_	0,03	_	-	_	_	0,03
CaO	_	1	_	-	_	_	_	_	_	0,04	_	_	_	_	_	-	_	_	0,04
MgO	_	1	_	-	_	_	_	_	0,66	_	_	_	_	_	_	-	_	_	0,66
P_2O_5	_	-	ı	_	-	_	_	-	_	-	_	_	0,05	_	_	_	-	_	0,05
MnO ₂	_	1	I	_	ı	_	_	ı	_	ı	_	_	ı	_	0,14	-	ı	_	0,14
0	_	2,92	0,10	0,13	9,80	0,05	0,02	0,001	_	ı	_	_	ı	_	_	-	ı	_	13,02
Au	-	1	-	_	-	-	_	-	_	_	_	_	-	-	-	0,003	_	_	0,003
Ag	_	_	1	_	_	_	_	_	_	_	_	_	-	_	_	_	0,01	_	0,01
Прочие	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	2,23	2,23
Итог	0,05	26,08	0,45	0,48	44,00	0,26	0,30	0,011	0,66	0,04	24,60	0,60	0,05	0,03	0,14	0,003	0,01	2,23	100,00

Из таблицы 3 видно, что выбранный температурный режим (1023 K) и время (1 ч.) окислительного обжига обеспечивают максимальную степень перевода сульфидов в оксиды: степень десульфуризации при обжиге составляет 99,9 %.

В тремьей главе представлены результаты исследований причин потерь благородных металлов со шлаками, а также влияния основных шлакообразующих компонентов (Na_2O , CaO, SiO_2) на поведение золота и серебра в процессе плавки.

Для проведения исследований влияния количества восстановителя на извлечение благородных металлов в коллектор была выбрана методика восстановительного обеднения с использованием в качестве восстановителя – графита, описанная в ранее выполненных иссле-

дованиях. При проведении экспериментов в качестве базового был принят шлак следующего состава, %: FeO - 42; $SiO_2 - 34$; CaO - 5; $Na_2O - 0.05$.

Результаты экспериментов показали, что максимальное извлечение золота (95 %) достигается при соотношении концентрат:углерод – 10:1, что соотносится с результатами ранее выполненных исследований.

Эксперименты по изучению влияния Na_2O на потери меди и благородных металлов со шлаками проводились в интервале концентраций оксида натрия -0-13 %.

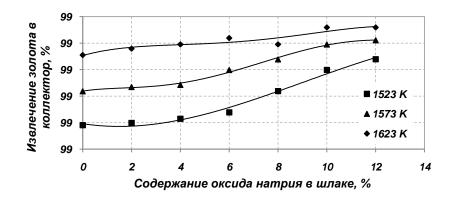


Рисунок 2 – Зависимость извлечения золота в коллектор от содержания оксида натрия в шлаке и температуры

Анализ полученных данных (рисунок 2) показывает, что извлечение благородных металлов в коллектор постепенно растет по мере увеличения в шлаках содержания оксида натрия. Это объясняется тем, что при повышении содержания оксида натрия температура плавления шлаковых расплавов понижается, и они становятся более текучими. В этих условиях отделение меди от шлака происходит более полно, и, как следствие, растет извлечение благородных металлов в коллектор.

Повышение температуры ведения процесса плавки также, как и повышение содержания Na_2O , ведет к росту извлечения благородных металлов (рисунок 2) вследствие понижения вязкости шлаковых расплавов. Однако повышение температуры выше 1523 К является нерациональным, так как при данной температуре при содержании Na_2O на уровне 12 % удается, избежав повышенных энергозатрат, достичь извлечения золота в коллектор на уровне 99,3 %.

Эксперименты по изучению влияния оксида кальция на потери меди и благородных металлов со шлаками проводились в интервале концентраций CaO - 5 - 20 %.

Известно, что увеличение содержания *CaO* в шлаках приводит к возрастанию межфазного натяжения на границе металл-шлак, вследствие чего уменьшаются механические потери меди со шлаком. В результате наблюдается рост извлечения благородных металлов в

коллектор (рисунок 3). Аналогичное влияние оказывает увеличение содержание кремнезема в шлаке (рисунок 4).



Рисунок 3 – Зависимость извлечения золота в коллектор от содержания оксида кальция в шлаке и температуры

Диапазон концентраций SiO_2 , позволяющий получать отвальные по ценным элементам шлаки, составляет 35-40 %, температура ведения процесса -1523 K.

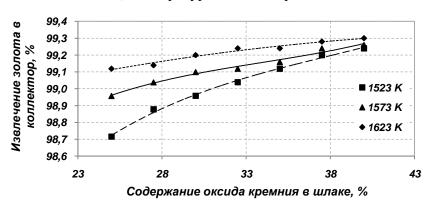


Рисунок 4 — Зависимость извлечения золота в коллектор от содержания оксида кремния в шлаке и температуры

В целом результаты экспериментов показывают, что получать отвальные по ценным элементам шлаки в процессе восстановительной плавки огарка удается при следующих условиях ведения процесса:

- -температура ведения процесса плавки 1523±20 K;
- -время плавки -1,5-2 ч.;
- -соотношение концентрат:восстановитель (в пересчете на углерод) составляет 10:1;
- -содержание основных шлакообразующих компонентов, %: $Na_2O-8-12$, CaO-15-20 и $SiO_2-35-40$.

При данных условиях извлечение золота и серебра в коллектор составляет 99,3 и 98,5 % соответственно.

В четвертой главе представлены результаты исследований зависимости изменения вязкости и плотности шлаковой системы от содержания основных шлакообразующих компонентов.

В процессе восстановительной плавки присутствующая в обожженных золотосодержащих концентратах медь восстанавливается в шлаковом расплаве и оседает на дно реактора. Полнота разделения шлака и меди в значительной степени зависит от разности их плотностей, поэтому необходимо стремиться к повышению величины разности, что может быть достигнуто путем подбора соотношения компонентов в шлаке.

Знание плотностей необходимо для оценки скорости разделения меди, в которой концентрируются благородные металлы, и шлака, а также при расчете емкости металлургических агрегатов.

Плотности расплавов при высоких температурах определяли методом измерения максимального давления в пузырьке газа при разных уровнях заглубления капилляра в шлаковые расплавы, составы которых аналогичны полученным в опытах по изучению влияния добавок CaO, Na_2O и SiO_2 на извлечение благородных металлов в коллектор.

Установлено, что с увеличением содержания Na_2O , CaO и SiO_2 в шлаке в интервале исследуемых концентраций его плотность снижается незначительно. В среднем плотность шлаков уменьшается на 0.2-0.3 г/см³ с повышением температуры на каждые 100 °C от температуры плавления шлака. В результате роста разности плотностей коллектора и шлака снижаются механические потери коллектора вследствие увеличения скорости осаждения частиц меди.

Изотермы молярного объема шлака при введении в него Na_2O и SiO_2 не обнаруживают отклонения от свойств идеального раствора (рисунки 5, 6), в то время как для CaO наблюдается слабовыраженное положительное отклонение кривой молярного объема от правила аддитивности (рисунок 7).

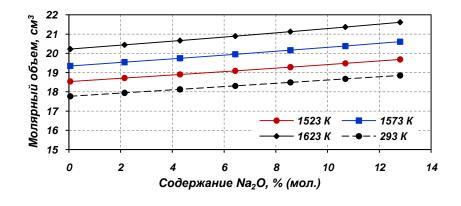


Рисунок 5 – Зависимость молярного объема расплава от содержания окиси натрия и температуры. Пунктирная линия – расчетные значения для комнатных температур

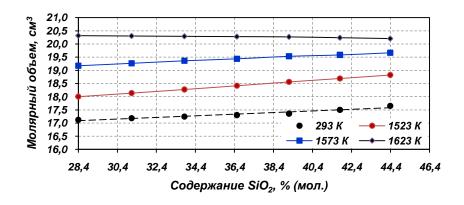


Рисунок 6 – Зависимость молярного объема расплава от содержания оксида кремния и температуры. Пунктирная линия – расчетные значения для комнатных температур

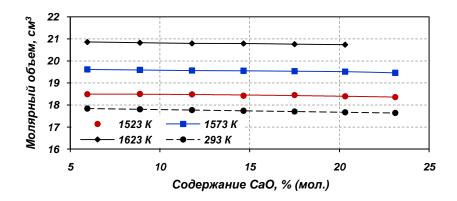


Рисунок 7 – Зависимость молярного объема расплава от содержания окиси кальция и температуры. Пунктирная линия – расчетные значения для комнатных температур

Зависимость вязкости шлаков восстановительной плавки от содержания Na_2O определяли ротационным методом, основанном на законе течения жидкости, находящейся в зазоре между двумя соосными телами, причем одно из тел (ротор) вращается, а другое неподвижно. В экспериментах применяли цифровой вискозиметра фирмы Brookfield марки DV-III+, конструкция которого предусматривает использование нестандартных шпинделей.

Установлено, что снижение вязкости при повышении температуры сильнее проявляется при переходе от 1523 К к 1573 К (рисунок 8). Это связано с тем, что завершение расплавления данного шлака происходит при температурах немного больших, чем 1523 К. В интервале 1523 − 1573 К шлак приобретает перегрев после полного расплавления, что отражается в резком снижении его вязкости с 0,18 − 0,3 до 0,07 − 0,15 Па·с. При повышении температуры шлака выше 1573 К происходит дальнейшее снижение вязкости, вследствие перегревания шлака, однако не в такой сильной степени, учитывая, что шлак уже полностью расплавлен.

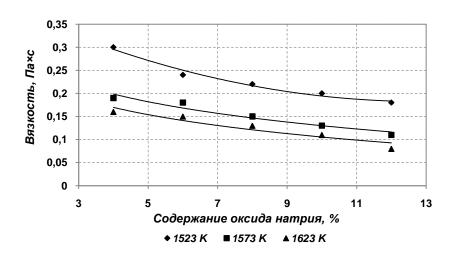


Рисунок 8 – Зависимость изменения вязкости шлаковых расплавов от содержания Na₂O при различной температуре

Таким образом, можно сделать вывод, что использование в качестве флюса оксида натрия в количестве 8 – 12 % снижает плотность, вязкость и температуру плавления шлаковых расплавов, что, в свою очередь, приводит к снижению механических потерь донной фазы и позволяет вести восстановительную плавку на медный коллектор при температурах ниже 1573 К с обеспечением высокого извлечения драгоценных металлов в коллектор.

В пятой главе приведено описание разработанной термодинамической модели процесса восстановительной плавки обожженных медных золотосодержащих концентратов, позволяющей анализировать поведение благородных металлов в процессе плавки. Для построения математической модели был выбран широко используемый в настоящее время термодинамический подход, являющийся наиболее эффективным с точки зрения адекватности результатов практическим данным. В основу термодинамического подхода положено представление о достижении между продуктами, образующимися в процессе плавки, состояния термодинамического равновесия. Данное обстоятельство позволяет использовать для описания поведения компонентов, наряду с балансовыми уравнениями законы химической термодинамики, выражения которых записываются для равновесных условий.

Построенная модель описывает распределение золота, серебра, меди и железа между образующимися в процессе плавки конденсированными фазами – шлаком и металлическим сплавом. Заданными параметрами приняты температура (T, K), парциальное давление кислорода (P_{O_2}) , количество и состав загружаемых материалов. Принято, что прочие, а также шлакообразующие оксиды (CaO, SiO_2, Na_2O) практически не участвуют в химических взаимодействиях и в процессе плавки полностью переходят в конечный шлак.

На рисунках 9-11 приведены зависимости коэффициентов распределения меди, золота и серебра между сплавом и шлаком при изменении содержания Na_2O , CaO u SiO_2 в

шлаке соответственно. Базовый состав шлака по флюсам, относительно которого изменялся его состав был следующим, %: $Na_2O - 2$, CaO - 15, $SiO_2 - 35$.

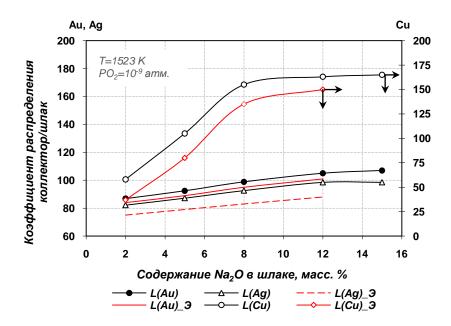


Рисунок 9 — Зависимости коэффициентов распределения меди, золота и серебра между коллектором и шлаком при изменении содержания Na_2O в шлаке

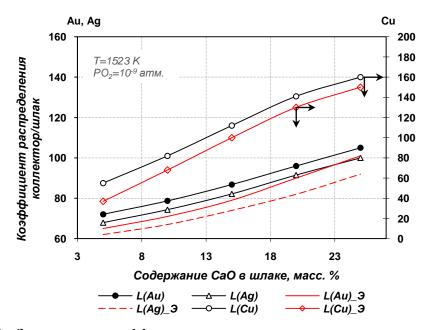


Рисунок 10 – Зависимости коэффициентов распределения меди, золота и серебра между коллектором и шлаком при изменении содержания *CaO* в шлаке

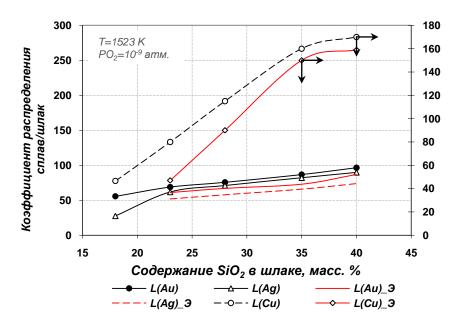


Рисунок 11 — Зависимости коэффициентов распределения меди, золота и серебра между коллектором и шлаком при изменении содержания SiO_2 в шлаке

Сравнение экспериментальных данных с результатами расчета на модели позволяет сделать вывод об адекватности построенной модели. Характер полученных зависимостей, и их количественное выражение для экспериментальных и расчетных данных хорошо соотносятся друг с другом. Имеющие место небольшие расхождения связаны, в первую очередь, с погрешностью химического анализа и невозможностью строго оценить восстановительный потенциал в условиях тигельной плавки в камерной печи.

На основании проведенных исследований была предложена принципиальная технологическая схема переработки медных флотационных золотосодержащих концентратов Быстринского месторождения, методом плавки на медный коллектор (рисунок 12).

Предлагаемая технологическая схема, в отличие от традиционной технологии производства меди, позволяет эффективно перерабатывать небольшие объемы концентратов Быстринского месторождения непосредственно на месте. Получаемая черновая медь, в которой концентрируются благородные металлы, с учетом ее небольших количеств, направляется на дальнейшую переработку на заводы полного цикла производства меди.

С целью отработки режимов окислительного обжига «намертво» и плавки огарка на медный коллектор в ЗАО «Приморская горнорудная компания «Восток» были проведены полупромышленные испытания, включавшие в себя изучение влияния времени и температуры обжига, количества восстановителя и состава шлака на показатели плавки. Полученные результаты позволили определить оптимальный режим проведения обжига и плавки концентратов.

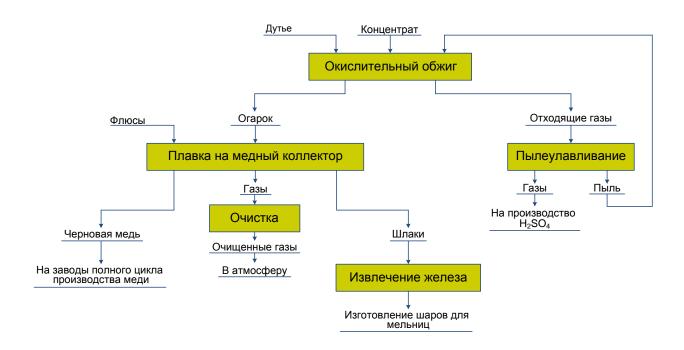


Рисунок 12 — Принципиальная технологическая схема переработки медных золотосодержащих концентратов Быстринского месторождения

Обжиг концентрата проводился в трубчатой вращающейся печи непрерывного действия, плавка огарка — в опытной руднотермической печи. В качестве сырья использовались медные флотационные концентраты, полученные при обогащении медно-магнетитовых золотосодержащих руд Быстринского месторождения Забайкальского края.

В общей сложности в ходе испытаний переработано 4 тонны концентрата, и получено 829 кг черновой меди, содержащей 796 г золота и 2747 г серебра.

Результаты испытаний подтвердили правильность и эффективность выявленных в ходе экспериментальных исследований режимов окислительного обжига «намертво» и плавки на медный коллектор.

При соблюдении данного режима извлечение золота и серебра в коллектор составляет 99,2 % и 98,1 % соответственно. Помимо извлечения благородных металлов, были получены хорошие показатели по извлечению меди из концентрата. Получаемые шлаки содержали не более 0,5 % Cu, что позволяет считать их отвальными.

В целом, полученные в ходе опытно-промышленных испытаний результаты позволяют сделать вывод об эффективности предложенного способа извлечения благородных металлов из сульфидных золотосодержащих медных концентратов Быстринского месторождения и целесообразности проведения полномасштабных промышленных испытаний.

Таким образом, нами разработана технология переработки медных золотосодержащих руд с использованием меди в качестве коллектора. Данная технология применима для разра-

ботки малых месторождений, в которых добыча меди не целесообразна, а в случае золотомедных руд этот процесс эффективен.

ОБЩИЕ ВЫВОДЫ

- 1. На основании аналитического обзора литературных данных установлено, что наибольшая эффективность извлечения благородных металлов из золотосодержащих концентратов с получением продуктов, пригодных для аффинажного производства, достигается при использовании пирометаллургических технологий, основанных на концентрировании благородных металлов и платинойдов в расплавленных меди и свинце (99,8 – 99,9 %) в процессе плавки на коллектор.
- 2. Установлены условия ведения процесса окислительного обжига температура 1023 K, время 1 час, позволяющие полностью удалить серу для предотвращения образование штейна.
- 3. Исследовано влияние основных шлакообразующих компонентов SiO_2 , Na_2O , CaO, расхода восстановителя, а также температуры на распределение благородных металлов между конденсированными фазами в процессе восстановительной плавки обожженных золотосодержащих концентратов. На основании результатов исследований определены параметры процесса плавки: состав шлаков %: $Na_2O 8 12$, CaO 15 20 и $SiO_2 35 40$; температура 1523 1573 K; продолжительность плавки 1,5 2 ч.; соотношение концентрат:углерод 10:1, позволяющие получать отвальные шлаки с содержанием меди 0,4 0,5 %.
- 4. Установлены зависимости изменения вязкости и плотности шлаковой системы от содержания основных шлакообразующих компонентов и температуры процесса. Показано, что использование в качестве флюса оксида натрия в количестве 8 12 % снижает плотность, вязкость и температуру плавления шлаковых расплавов, что, в свою очередь, приводит к снижению механических потерь коллектора, позволяет вести восстановительную плавку на медный коллектор при температуре 1523 1573 К и обеспечивает высокое извлечение золота и серебра в коллектор 99,3 и 98,5 % соответственно.
- 5. Предложена термодинамическая модель процесса восстановительной плавки обожженных медных золотосодержащих концентратов, позволяющая прогнозировать извлечение благородных металлов и меди в коллектор при изменении важнейших технологических параметров: состава сырья, температуры плавки, коэффициента избытка кислорода (а).
- 6. Разработана принципиальная технологическая схема переработки медных золотосодержащих концентратов Быстринского месторождения, методом плавки на медный коллектор, которая прошла опытно-промышленную проверку в ЗАО «Приморская горнорудная

компания «Восток». Переработано 4 тонны концентрата, и получено 829 кг черновой меди, содержащей 796 г золота и 2747 г серебра. Результаты испытаний подтвердили правильность и эффективность выявленных в ходе экспериментальных исследований условий окислительного обжига «намертво» и плавки на медный коллектор. При данных условиях извлечение золота и серебра в коллектор составляет 99,2 и 98,1 % соответственно. Получаемые шлаки содержали не более 0,5 % Cu, что позволяет считать их отвальными.

Основное содержание работы отражено в публикациях:

- 1. Пересади С.С., Стрижко Л.С. Влияние состава шлака и температуры плавки на распределение благородных металлов при восстановительной плавке медного золотосодержащего огарка // Цветные металлы. 2010 г., № 1, С. 45 49.
- 2. Пересади С.С., Стрижко Л.С., Стрижко В.С. Анализ влияния режимов плавки на распределение благородных металлов между шлаком и донной фазой // Цветные металлы. 2010 г., № 3, С. 54 57.
- 3. Пересади С.С., Стрижко Л.С. Разработка технологии извлечения благородных металлов из золото-медных концентратов от обогащения медно-магнетитовых золотосодержащих скарновых руд // Сборник тезисов докладов международной научно-практической конференции «Металлургия цветных металлов. Проблемы и перспективы» г. Москва. МИСиС, 2009 г., С. 188 189.
- 4. Пересади С.С., Стрижко Л.С. Разработка безцианистой технологии извлечения золота при комплексной схеме освоения недр // Сборник тезисов докладов VII-я Международной конференции «Ресурсовоспроизводящие, малоотходные и природоохранные технологии освоения недр» г. Ереван, Республика Армения, 2009 г., С. 115 116.
- 5. Пересади С.С., Стрижко Л.С. Разработка технологии извлечения золота из сырья с повышенным содержанием железа //Сборник тезисов докладов VIII-я Международной конференции «Ресурсовоспроизводящие, малоотходные и природоохранные технологии освоения недр» г. Таллинн, Эстонская Республика, 2009 г., С. 233 235.
- 6. Ноу-хау от 21 февраля 2011 г. № 17-344-2011 ОИС «Разработка термодинамической математической модели процесса восстановительной плавки на медный коллектор». Зарегистрировано в Депозитарии ноу-хау Отдела защиты интеллектуальной собственности НИТУ «МИСиС».