МИЛОВА ВАЛЕНТИНА МИХАЙЛОВНА

РАЗРАБОТКА ЭКСПЕРТНО-АНАЛИТИЧЕСКОГО МЕТОДА ОЦЕНКИ КАЧЕСТВА ОБРАЗОВАТЕЛЬНЫХ СИСТЕМ

Специальность 05.13.10 - управление в социальных и экономических системах

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата технических наук

Работа выполнена на кафедре управления качеством высшего образования Исследовательского центра проблем качества подготовки специалистов Московского государственного института стали и сплавов (технологического университета).

Научный руководитель: доктор психологических наук,

кандидат технических наук, профессор Добряков Анатолий Александрович

Официальные оппоненты: доктор технических наук, профессор

Литвак Борис Григорьевич

кандидат технических наук, профессор

Соловьев Виктор Петрович

Ведущая организация: Санкт-Петербургский государственный

электротехнический университет «ЛЭТИ»

Защита диссертации состоится <u>«30 » марта 2007 г.</u> в 14⁰⁰ часов на заседании диссертационного совета Д 212.132.10 в Исследовательском центре проблем качества подготовки специалистов Московского государственного института стали и сплавов (технологического университета) по адресу: 105318, г. Москва, Измайловское шоссе, 4.

С диссертацией можно ознакомиться в библиотеке Исследовательского центра проблем качества подготовки специалистов Московского государственного института стали и сплавов (технологического университета).

Автореферат разослан <u>«27» февраля</u> 2007 г.

Ученый секретарь диссертационного совета

Моргунов И.Б.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность. Участие России в Болонском процессе, одним из основных требований которого является повышение качества образования стран — участниц, послужило мощным толчком к разработке вопросов управления качеством в образовательной сфере. Но если в промышленной сфере методы управления качеством стали применяться уже достаточно давно, то в образовательной сфере, в силу целого ряда отличительных особенностей, одной из которых является экспертный способ получения информации, они практически не использовались.

Решая задачи менеджмента, приходится оперировать данными различной природы. Если в промышленности цели, критерии, различные ограничения задаются, как правило, четкими (числовыми значениями), то в образовательных системах это удается не часто. Вместо количественных значений в ряде случаев могут быть использованы только вербальные оценки, формируемые экспертомчеловеком, что и порождает наличие неопределенности при описании необходимых параметров системы. Поэтому учет этих неопределенностей, разработка методов их измерения являются одними из важнейших задач в развитии и использовании методов менеджмента качества в образовательной сфере.

Существующие методы внешней и внутренней оценки качества образовательных систем строятся в основном на моделях премий по качеству с заданным перечнем показателей и весов; при этом используется экспертный способ оценки и балльные шкалы. Однако в условиях рынка желательно иметь гибкий инструментарий, адекватно отражающий характеристики образовательной системы (далее ОС), учитывающий ее особенности, изменения внешних и внутренних условий и позволяющий строить управление на основе данных, полученных с использованием более точных методов оценки. Известно, что для решения задач, в которых исходные данные являются ненадежными и слабо формализуемыми, в промышленности и в военном деле с успехом применяется математический аппарат нечетких множеств, который использует язык, близкий к естественному, в то время как в образовательной сфере этот аппарат еще не нашел применения.

В настоящее время необходимость совершенствования моделей самообследования и механизмов самооценки, использующих математическое моделирование процессов функционирования образовательных систем и способов их оценки

на основе методов системного анализа, стала совершенно очевидной.

Использование теории нечетких множеств связано с определением функций принадлежности, описывающих входные и выходные параметры системы, которые выбираются субъективно и, таким образом, могут оказаться не вполне отражающими реальную действительность. Однако построение адаптивных систем, корректируемых в процессе работы, позволяет итеративно уточнять значения параметров и, следовательно, принимать объективно-обоснованные управленческие решения, тем самым, повышая качество менеджмента и конкурентоспособность ОС.

Актуальность настоящего исследования определяется необходимостью повышения качества управления ОС посредством разработки методов, позволяющих адекватно оценивать и целенаправленно проектировать улучшение характеристик ОС в условиях неполной и нечеткой исходной информации.

Цель исследования. Основная цель исследования состоит в разработке экспертно-аналитического метода на основе теории нечетких множеств для повышения качества управления образовательными системами.

Поставленная цель предопределила необходимость постановки и решения следующих задач:

- 1. Анализ основных подходов к оценке качества технических и экономических систем в условиях неопределенности. Определение методов для поддержки процессов многокритериального выбора решений применительно к сфере образования.
- 2. Разработка экспертно-аналитического метода (далее ЭАМ) для оценки и проектирования качества ОС и отдельных ее составляющих.
- 3. Разработка алгоритма получения набора критериев, установление их значимости, с учетом требований всех заинтересованных сторон.
- 4. Построение соответствующих формальных механизмов выбора решений, характеризующих этапы/шаги ЭАМ в условиях неопределенности.
- 5. Апробация ЭАМ на различных объектах образовательной системы: оценка процессов системы менеджмента качества (СМК) по требованиям ГОСТ Р ИСО 9001:2001; оценка показателей: «результативность СМК», «воспитательная работа», «компетентность»; выработка рекомендаций для специа-

листов, занимающихся проблемами качества.

Объект исследования — системы качества / системы менеджмента качества образовательных систем.

Предмет исследования – структура качества образовательных систем, критерии и методы его оценки; принципы формирования.

Методы исследования: методы системного анализа, исследования операций, теории нечетких множеств, многокритериальной оптимизации и экспертных оценок.

На защиту выносятся:

- 1. Формализованный экспертно-аналитический метод принятия решений в виде пятиэтапной модели в условиях частичной априорной неопределенности, включающий следующие составляющие:
 - алгоритм выбора критериев, позволяющий учесть требования всех заинтересованных сторон и оценку их значимости;
 - формализованную модель оценки обобщенного показателя качества образовательной системы с учетом неопределенности;
 - алгоритм выбора приемлемых альтернатив;
 - модель многокритериальной задачи принятия решений при нечетких критериях и нечетких целях;
 - алгоритм проектирования управляемых параметров системы с учетом выбранной альтернативы и фактического состояния системы.
- 2. Технология оценки показателя «качество процесса», показателя «результативность СМК», показателей «компетентность» и «воспитательная работа».

Научная новизна диссертационного исследования:

Предложен экспертно-аналитический метод оценки качества образовательных систем (далее ОС), учитывающий разные виды неопределенности: нечеткость данных, лингвистическую неопределенность, неполноту информации.

На основе теории нечетких множеств разработан алгоритм интегральной оценки качества ОС, учитывающий высказывания экспертов в нечетко-обусловленной форме. Разработан классификатор качества ОС, характеризую-

щий уровни качества, позволяющий дать заключение о качестве и рекомендации по управляющим воздействиям на систему на основе полученной оценки.

Предложен механизм самооценки организаций, учитывающий требования всех заинтересованных сторон. Разработанный метод позволяет учитывать характерные особенности и реальные возможности образовательных систем, отслеживать динамику изменения базовых критериев и на этой основе целенаправленно улучшать характеристики системы. Используемая в работе теория нечетких множеств представляет собой гибкий аппарат при выборе решений в случае нечеткой и неполной информации в исходных данных. Поддержка решения ЛПР по проектированию улучшения показателей качества базируется не только на эмпирических данных, но и на значениях, полученных расчетным путем.

Практическая значимость. Практическая значимость результатов заключается в создании инструментария для решения задач оценки и проектирования качества как всей образовательной системы в целом, так и ее составляющих. Разработанные модели и методы реализованы, внедрены и используются в практике НОУ «Невский институт языка и культуры», Брянского государственного технологического университета, на факультете управления РГПУ им. А. И. Герцена.

Апробация работы. Основные результаты диссертационного исследования докладывались и обсуждались: на II международном симпозиуме «Качество, инновации, образование и cals-технологии», Хургада, 2006; V, VI международных научно-практических конференциях «Менеджмент XXI века», С.-Петербург, 2005, 2006; Международной научно-методической конференции «Управление качеством в современном вузе», С.-Петербург-Калуга, 2003; IV российском семинаре по инженерному образованию «Многоуровневая подготовка специалистов в области ВПО в России», С.-Петербург, 2003; международной научно-практической конференции «С.-Петербург—полиэтнический мегаполис», 2003.

Исследования по теме диссертационной работы проводились автором при разработке, внедрении и сертификации системы менеджмента качества НОУ «Невский институт языка и культуры» на соответствие требованиям стандартов ГОСТ Р ИСО 9001:2001, а также в рамках проектов:

50/05 - РТП «Разработка механизмов экспертизы реализации комплексных

программ и проектов, направленных на развитие образования», ведомственная научная программа «Развитие научного потенциала высшей школы» (факультет управления РГПУ им. А.И. Герцена);

П-178 «Апробация, доработка и внедрение в образовательных учреждениях ВПО типовой модели системы управления качеством образовательного учреждения» (государственный контракт от 19 августа 2006 г.) (руководитель работ по проекту в НОУ «Невский институт языка и культуры» В. М. Милова).

Публикации. Основные результаты диссертационного исследования опубликованы в 10 печатных работах.

Структура и объем работы. Диссертация состоит из введения, пяти глав и заключения, списка использованных источников из 168 наименований. Общий объем работы 157 страниц, в том числе 42 таблицы и 21 рисунок.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность исследования, сформулированы цели, задачи, научная новизна и определена практическая значимость полученных результатов; приведены сведения об апробации работы и сформулированы основные положения, выносимые на защиту.

В первой главе проведен анализ отечественного и зарубежного опыта использования теоретико-методологических подходов к оценке качества ОС на основе обзора и анализа зарубежных и отечественных премий по качеству; требований к комплексной оценке высших учебных заведений; стандартов и директив ENQA; положений Болонской декларации; требований, предъявляемых МС и ГОСТ Р серии ИСО 9000.

Во второй главе рассмотрены особенности системного подхода к решению задач управления. Проведено исследование особенностей применения нечетких множеств к техническим, экономическим и финансовым системам. Исследованы возможности использования лингвистической переменной и получения составных термов посредством модификации первичных термов; выявлены подходы к выбору функций принадлежности и их аналитическому виду. Сделан вывод о возможности использования формализма нечетких множеств при оценке образовательных систем; определена область исследования.

В третьей главе в общем виде дано формализованное описание проблемной ситуации, определяющее структуру образовательной системы, которое представляется «кортежной» записью:

$$<\Pi, T, C/Z^{T3}, БК, O, A, Q, L, X\Pi, H>$$
, где

 $\Pi = \{\Pi_i\}, i \in I = \{1,2,...,n\}$ — множество объектов системы;

T – время, отводимое для изучения системы;

 $C = \{C_j\}, j \in J = \{1,2,...,k\}$ — средства/расчетные процедуры и методы;

 Z^{T3} — цель/совокупность целей;

 $БK = (БK_1, ..., БK_r)$ – вектор базовых критериев;

 $X\Pi = \{X\Pi_1, ..., X\Pi_r\}$ – множество факторов, определяющих базовые критерии;

 $A = \{A_1, ..., A_m\}$ – множество альтернативных вариантов;

Q – интегральный/обобщенный критерий качества системы;

 $L = \Phi(\Omega, A)$ – обобщенный критерий эффективности;

 $\Omega = f(EK^{T3}, XII) - функция связи;$

 $O = \{O_1, ..., O_m\}$ – множество ограничений;

H – решение ЛПР (лицо, принимающее решение).

Процедура оценки и проектирования улучшений образовательной системы представляет собой процесс функционирования системы управления, состоящий из органа управления - ЛПР, объекта управления - ОУ и идеального объекта - ТЗ, связанных между собой прямыми и обратными связями. Задача ЛПР состоит в том, чтобы с учетом поставленной цели преобразовать исходную информацию, характеризующую фактическое состояние ОС, так, чтобы показатели эффективности функционирования ОС максимально удовлетворяли поставленным целям. Именно для этого и предложен разработанный автором экспертно - аналитический метод (ЭАМ), позволяющий непрерывно отслеживать и целенаправленно улучшать качество системы. Отличительная особенность метода заключается в том, что его функциональная структура построена на антропоцентрическом подходе и представлена в виде кольцевых пентадно-структурированных опорных схем. Это позволяет разбить процесс оценки и проектирования качества ОС на логически замкнутые пять этапов, каждый из которых состоит из пяти шагов. Общая структурная схема ЭАМ приведена на рис 1.

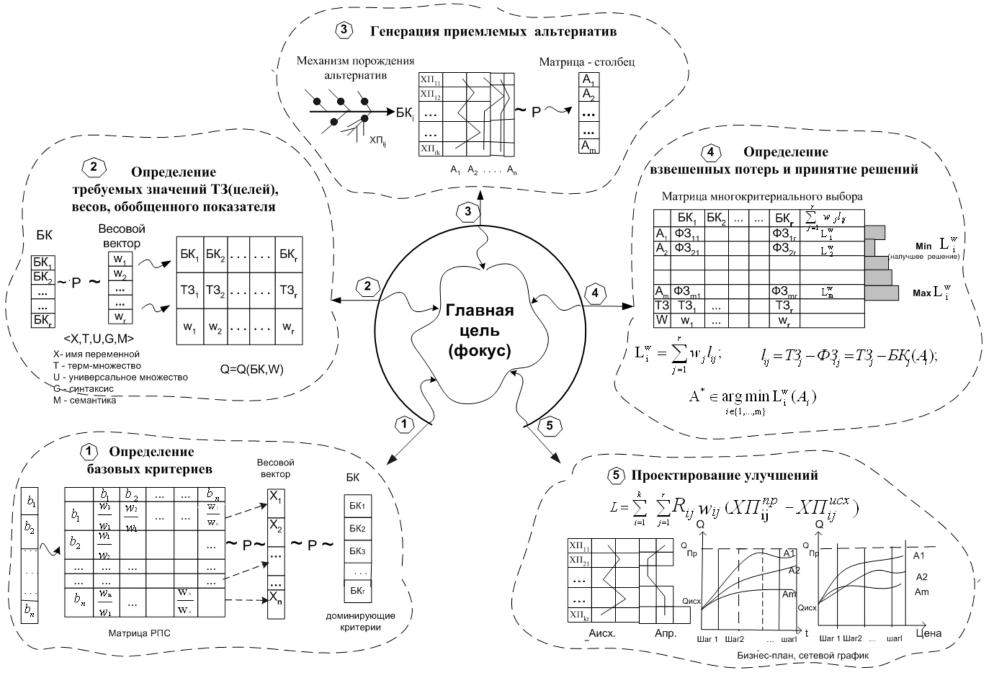


Рис.1. Структура экспертно-аналитического метода оценки и проектирования качества ОС

Этап 1. На первом этапе определяется векторный критерий $BK = (BK_1, ..., EK_r)$, адекватно отражающий проблемную ситуацию, который устанавливается на основе предпочтений ЛПР по методу анализа иерархий (МАИ) и определяются веса. Для этого выявляется полный набор факторов $b_1, ..., b_n$, характеризующих качество образовательной системы с учетом требований всех заинтересованных сторон; формируется матрица парных сравнений $B = (b_{ij})_{nxn}$ на основе шкалы возможных качественных признаков, где произвольный элемент b_{ij} выражает отношение предпочтения b_i к b_j ; вычисляется весовой вектор $W = (w_1, ..., w_n)$, как собственный вектор матрицы B, отвечающий максимальному собственному значению. Упорядочивание критериев производится по величине компонентов собственного вектора.

Этап 2. На втором этапе устанавливаются или назначаются цели, которые могут принимать как количественные, так и качественные значения. В связи с тем, что ОС характеризуется в основном качественными факторами и нечетко определенными целями, в методе применяется теория нечетких множеств. Каждая компонента EK_i векторного критерия характеризуется определенной целью/T3для ЛПР, а достижение этой цели выражается в условиях максимизации компонент EK_i . Значения качественных критериев, выраженных в терминах цели, можно представить в виде нечетко определенных предпочтений, что гораздо проще, чем задание четкой целевой функции, т.к. в этом случае требуется не численная оценка конечного результата, а лишь его качественное ранжирование. При назначении цели используется опыт, интуиция и здравый смысл людей, осуществляющих управление, а в качестве инструментария может применяться метод бенчмаркинга. При реализации метода возникает необходимость решения сопутствующих задач на основе теории нечетких множеств: определение лингвистических переменных, определение уровней и диапазонов изменения критериев, определение терм-множеств и функций принадлежности. Для унифицированного описания критериев, поскольку они измеряются в разных единицах и/или шкалах, осуществляется переход к однонаправленным шкалам и проводится их нормализация путем сведения диапазона изменения значений к отрезку [0,1]. При таком описании критериев появляется возможность сопоставления их значений со значениями функций принадлежности и безразмерными значениями различных критериев.

Для оценки качества ОС и ее объектов вводится обобщенный показатель качества, характеризующий интегральное качество системы Q = Q(EK) = Q(EK,W), суть которого состоит в «свертке» многих оценок в единую оценку. Вид синтезирующей функции может быть выбран в виде линейной свертки:

$$Q = \sum_{s=1}^{r} w_s BK_s, \text{ где } w_s - \text{«вес» } BK_s, BK_s - \text{критерий}$$
 (1)

В случае нечетких значений критериев объединение нечетких множеств можно определить различными способами, при этом выбор конкретного способа зависит от смысла, вкладываемого в соответствующие операции в рамках рассматриваемой задачи. Вычисленное значение обобщенного показателя Q интерпретируется по разработанному классификатору качества, который описывает различные установленные уровни качества системы.

Этим 3. На третьем этапе осуществляется генерация множества приемлемых альтернатив и выделяется подмножество Парето A_1, \ldots, A_m . Для этого из множества всех возможных вариантов исключаются заведомо неприемлемые, которые никогда не могут оказаться выбранными, если выбор осуществляется достаточно «разумно» и с учетом фактического ограничения —состояния системы Q_{ucx} .

При этом генерация альтернатив сводится к выбору приемлемого для практики набора значений $X\Pi_{ij}$ - показателей нижнего уровня, где j для каждого i зависит от количества факторов, существенно влияющих на EK_i . Разложение базовых критериев EK_i на характеристические параметры $X\Pi_{ij}$ предлагается делать, используя технологию развертывания функции качества (QFD).

Этип 4. На четвертом этапе решается задача выбора «лучшей» альтернативы, которая наиболее полно удовлетворяет целям ЛПР на основе целевой функции L (или Q). Формально задача представляется в виде: существуют альтернативы A_k , k=1,...,m, которые образуют множество решений $A=\{A_1,...,A_m\}$; существует векторный критерий $EK=(EK_1,...,EK_r)$; ЛПР необхо-

В качестве целевой функции принимается функционал суммарных взвешенных потерь L_i^w (или функция полезности Q_i^w):

димо выбрать альтернативу $A^* \in A$ на основе определенной целевой функции.

$$L_i^w = \sum_{j=1}^r w_j l_{ij}$$
, где $W = (w_1, ..., w_r)$ – весовой вектор, $i = 1, ..., m;$ (2)

 $l_{ij} = T3_j$ - $\Phi 3_{ij} = T3_j$ - $EK_j(A_i) \in \mathbb{R}^r$, i = 1, ..., m; j = 1, ..., r; $A_i - i$ - ая альтернатива;

Поскольку в общем случае величины $T3_j$ и $\Phi 3_{ij}$ являются нечеткими, то последние разности вычисляются следующим образом:

$$l_{ij} = \rho_{ij} \left(m_{EK_{ij}}^{73}, \mu_{EK_{ij}}^{73}, m_{EK_{ij}}, \mu_{EK_{ij}} \right), \tag{3}$$

где ρ_{ij} — Евклидово расстояние между центрами тяжести (ЦТ) нечетких множеств $T3_{j,}$ и EK_{j} : $\left(m_{EK_{ij}}^{T3}, \mu_{EK_{ij}}^{T3}\right)$ и $\left(m_{EK_{ij}}, \mu_{EK_{ij}}\right)$, которое вычисляется по формуле:

$$l_{ij} = \sqrt{\left(m_{EK_{ij}}^{T3} - m_{EK_{ij}}\right)^2 - \left(\mu_{EK_{ij}}^{T3} - \mu_{EK_{ij}}\right)^2} . \tag{4}$$

При этом координаты ЦТ нечетких множеств определяются на основе формул:

$$m_{EK}^{A} = \frac{\int_{EK} x \mu(x) dx}{\int_{EK} \mu(x) dx}; \mu_{EK}^{A} = \frac{\int_{EK} \mu(x) f^{\mu(x)} [\mu(x)] d\mu(x)}{\int_{EK} \mu(x) dx},$$
 (5)

где $m_{\mathit{БK}}$, $\mu_{\mathit{БK}}$ - координаты центров тяжести, $f^{\mu(x)}[\mu(x)]$ - обратная функция к функции $\mu(x)$, $A \in \{T3, \Phi 3\}$. В качестве «лучшего» решения выбирается та альтернатива, которая доставляет минимум значения функции L_i^w .

$$A^* = \underset{i \in \{1, \dots, m\}}{\operatorname{arg\,min}} L_i^w(A_i)$$
(6)

Формальный подход к выбору решения с использованием функции полезности Q строится аналогично рассмотренному выше, на основе множества значений $Q^w = \{Q_1^w, ..., Q_m^w\}$ критериев EK для альтернатив $A = \{A_1, ..., A_m\}$. При этом агрегирование базовых критериев осуществляется согласно формуле (1) или в случае нечетких множеств, по ее аналогу:

$$Q^{W}(A_{i}) = \bigcup_{j=1}^{r} w_{j} \mathcal{B} \mathcal{K}_{j}(A_{i}), \tag{7}$$

При этом функции принадлежности для обобщенного критерия вычисляются:

$$\mu_{Q^{W}(A_{i})} = \max\{w_{1}\mu_{BK_{1}(A_{i})}, w_{2}\mu_{BK_{2}(A_{i})}, w_{r}\mu_{BK_{r}(A_{i})}\}$$
 (8)

Для интерпретации результата вычисления обобщенного показателя в виде числа на отрезке [0,1] необходимо найти лингвистическое среднее результирующей функции принадлежности:

$$m_{\mu_{\mathcal{Q}^{W}(A_{i})}} = \frac{\sum_{j=1}^{r} x_{j} \mu_{i}(x_{j})}{\sum_{j=1}^{r} \mu_{i}(x_{j})},$$
(9)

где x_j — точки, полученные по центроидному методу (по формуле 5) для соответствующих функций принадлежности $Q(A_i)$. Таким образом, «лучшим» решением A^* является:

$$A^* = \arg\max_{i \in \{1, \dots, m\}} Q(A_i) = \max_{i \in \{1, \dots, m\}} m_{\mu_{Q^W(A_i)}}.$$
 (10)

Этиап 5. На пятом этапе проектируется реализация выбранной альтернативы A^* , которая становится целью системы - $A_{\text{проект}}$. Сравнение проектной альтернативы A^* и фактического состояния системы $A_{\text{исх.}}$ позволяет установить отклонения по каждому базовому критерию. После ввода дополнительных ограничений («трудоемкости» изменения локальных критериев $\Delta X\Pi_{ij}$, приоритета возможных изменений подкритериев) выбирается решение, минимизирующее целевую функцию L (заданную алгоритмически, как последовательность шагов). Данная процедура проводится в интерактивном режиме. При этом один из возможных вариантов представления L может быть задан формулой (11):

$$L = \sum_{i=1}^{r} R_{i} w_{i} l_{i} = \sum_{i=1}^{r} R_{i} (l, t, \Phi, P) w_{i} l_{i} = \sum_{i=1}^{r} \sum_{j=1}^{m} R_{ij} (\Delta X \Pi, t, \Phi, P) w_{ij} \Delta X \Pi_{ij};$$
 (11)

где
$$X\Pi = \{X\Pi_{ij}\}$$
 - подкритерии; $w_i = \{w_{ij}\}$ – веса $X\Pi_{ij}$; $R_i = \frac{1}{w_i} \frac{\partial L}{\partial l_i}$, $R_{ij} = \frac{1}{w_{ij}} \frac{\partial L}{\partial \Delta X\Pi_{ij}}$;

$$\Delta X\Pi = X\Pi_{\text{проек}}$$
 - $X\Pi_{\text{исх}}; t$ – время; Φ – финансы; P – прочие ресурсы;

Для реализации варианта составляется программа практических мероприятий, которая приводит к улучшению базовых характеристик системы, при целенаправленном изменении локальных параметров.

В четвертой главе рассмотрено применение ЭАМ к оценке гипотетической ОС. В рамках поставленной задачи проведен выбор показателей $EK = (EK_{1,...,}EK_{5})$, согласованных с показателями комплексной оценки и требованиями внешних и

внутренних потребителей; установлена их значимость; проведена декомпозиция критериев EK_i на подкритерии $X\Pi_{ij}$, определены уровни качества. Для каждого EK_i / $X\Pi_{ij}$ введены лингвистические переменные и определены функции принадлежности. Степень оценочной уверенности для всех критериев выражена треугольными симметричными функциями принадлежности в пятиуровневой шкале качества на носителе [0,1], представленной в таблице 1.

Таблица 1

Пере- менные (ЛП)	<i>Уровни</i>	Термы нечет- ких множеств	Носитель	Функции принадлежности на носителе		
	1	«неудовлетво- рительно»	$0 \le x \le 0.25$	$\mu_1 = -4x + 1$	при $0 \le x_i \le 0.25$	
$X_i \in [0,1]$ $i=1,\dots,5$	2	«плохо»	$0 \le x \le 0.5$	$\mu_2 = \begin{cases} 4x \\ -4x + 2 \end{cases}$	при $0 \le x_i \le 0.25$ при $0.25 \le x_i \le 0.5$	
	3	«средне»	0,25 < <i>x</i> <0,75	$\mu_3 = \begin{cases} 4x - 1 \\ -4x + 3 \end{cases}$	при $0.25 \le x_i \le 0.5$ при $0.5 \le x_i \le 0.75$	
	4	«хорошо»	0,5 < x < 1	$\mu_4 = \begin{cases} 4x - 2 \\ -4x + 4 \end{cases}$	при $0.5 \le x_i \le 0.75$ при $0.75 \le x_i \le 1$	
	5	«отлично»	$0,75 < x \le 1$	$\mu_5 = 4x - 3$	при $0.75 \le x_i \le 1$	

Введен обобщенный критерий Q_{ijklm} , представляющий собой набор нечетких значений по одному для каждого частного критерия. Индексы i,j,k,l,m $\in I=\{1,2,\ldots,5\}$ показывают уровни качества критериев. На основе эмпирических данных получена оценка текущего состояния ОС и рассчитан обобщенный показатель. Для нечетких значений критериев функция принадлежности обобщенного показателя Q_{ijklm} определяется по формулам:

$$\mu^*_{ijklm} = \max\{w_1\mu_i; w_2\mu_j; w_3\mu_k; w_4\mu_l; w_5\mu_m\}; \quad i, j, k, l, m \in [1,..,5].$$
 (12)

$$Q_{ijklm} = \int_{0}^{1} x \mu_{ijklm}^* dx ; \qquad (13)$$

Используя значения индекса соответствия аккредитационным показателям МОиН, который получен на основе статистических данных, и учитывая требования ГОСТ Р ИСО 9001:2001, был разработан пятиуровневый классификатор качества ОС, позволяющий установить уровень качества системы и на основе полученного заключения принять решение по управляющим воздействиям. Дальнейшее улучшение

системы строится на основе выбора лучшей альтернативы. В рассмотренном примере множество Парето включает варианты, интересные с точки зрения анализа ОС. Для них вычислены значения Q_{ijklm} . В качестве «лучшей» альтернативы выбрана эталонная Q_{55555} , т.к. ей соответствует максимальное значение $\mu_{\varrho} = 0,916$, где $\mu \in [0,1]$.

При этом нормализация значений $\Phi 3_{ij}$ может осуществляться одним из способов: по строкам, по столбцам, по матрице соответственно:

$$\overline{\Phi 3_{ij}} = \frac{\Phi 3_{ij} - \min \Phi 3_{ij}}{\max_{i} \Phi 3_{ij} - \min_{i} \Phi 3_{ij}}; \overline{\Phi 3_{ij}} = \frac{\Phi 3_{ij} - \min_{i} \Phi 3_{ij}}{\max_{j} \Phi 3_{ij} - \min_{j} \Phi 3_{ij}}; \overline{\Phi 3_{ij}} = \frac{\Phi 3_{ij} - \min_{i} \Phi 3_{ij}}{\max_{ij} \Phi 3_{ij} - \min_{ij} \Phi 3_{ij}}, (14)$$

где ϕ_{ij}^3 — исходная величина критерия, а $\overline{\phi_{3_{ij}}}$ — нормализованная.

В главе 5 рассмотрены примеры использования ЭАМ к задачам, решающим частные вопросы оценки качества ОС: показатель «результативность СМК» на основе показателей процессов, характеризующих их качество; показатель «компетентность»; показатель «воспитательная работа».

Оценка качества процессов проведена на модели СМК НОУ «Невского институт языка и культуры». На основе фактических значений параметров $X\Pi_{ij}$ и установленной значимости процессов рассчитаны обобщенные показатели качества процессов. Сводные результаты приведены в таблице 2.

Таблица 2 Сводные результаты оценки процессов ОС для текущего состояния Q_{34323}

Процессы № п.п.	Название процесса	Обобщенный показатель процесса	Значение показателя	W (вес процесса)
1	Организационно-управленческий	$\Omega_1 = \Omega^{OPY}_{24534}$	0,620	5/15
2	Образовательный	$\Omega_2 = \Omega^{OBP}_{44323}$	0,503	4/15
3	Научно-исследовательский	$\Omega_3 = \Omega^{\text{HMP}}_{23344}$	0,356	3/15
4	Информатизационный	$\Omega_4 = \Omega^{\text{ИН}\Phi}_{34344}$	0,565	2/15
5	Вспомогательный	$\Omega_5 = \Omega^{\mathrm{BCII}}_{34344}$	0,565	1/15

Сбор и обработка данных осуществляются на основе «карт процесса», которые имеют вид матрицы, где по строкам расположены критерии и их составляющие, а по столбцам – их качественные уровни. Результативность систем ка-

чества рассчитывается по формуле (9), а отклонения от целевых показателей оцениваются по формулам:

$$\Omega = \sum_{i=1}^{s} w_i \Omega_i, \qquad \Delta \Omega = \Omega^{T3} - \Omega_{\text{ucx}}$$
 (15)

где w_i - вес процесса; Ω_i - обобщенный показатель процесса; $\Omega^{\rm T3}$, $\Omega_{\rm исx}$ – требуемое и исходное состояния системы. Определение лучшей, приемлемой в условиях конкретной ОС, альтернативы позволяет ставить вопрос о проектировании улучшения качества процессов как на уровне отдельных процессов, так и на уровне СМК в целом с учетом трудоемкости изменений каждого локального параметра $X\Pi_{ij}$. В рассмотренном примере, для улучшения характеристик ОС определилась следующая последовательность управляемых параметров $X\Pi_{ij}$ (статьи бюджета, стратегия, кадровая политика, социальные выплаты, рентабельность образовательной программы), на которые необходимо воздействовать.

В диссертации предложен метод оценки показателя «компетентность» с использованием несимметричных функций принадлежности, которые представляют, с практической точки зрения, наибольший интерес. Степень «размытости» нечеткого множества для μ характеризуется параметрами a_i , c_i . В случае симметричной функции принадлежности: $a_i = c_i$. Для исследования взят интервал $[0,5-a_3;\ 0,5+c_3]$ с узловой точкой 0.5 (абсцисса, где μ принимает максимальное значение) и с функцией принадлежности, отражающей интегральное качество K_{33333} . При этом обобщенный критерий «компетентность» для нечетких значений определяется по формуле (1), которая сводится к формуле:

$$K_{33333} = \frac{0.5(a_3 + c_3) + \frac{1}{3}(c_3^2 - a_3^2)}{a_3 + c_3}.$$
 (16)

Для рассмотренного примера получен разброс возможных значений показателя $K = 0.5 \pm 0.083$, зависящий от вида функции принадлежности и демонстрирующий возможность учета лингвистических особенностей высказываний эксперта в количественной оценке.

В пункте 5.4 предложен метод оценки качества показателя «воспитательная работа» в вузе, основанный на критериях комплексной оценки МОиН, включающий одиннадцать подкритериев равной значимости (предпочтения не указаны).

На основе предложенного метода рассчитаны значения показателя «воспитательная работа» с использованием различных асимметричных треугольных функций принадлежности. Расчеты показали, что для одних и тех же качественных уровней подкритериев базового показателя получен «размытый» результат, попадающий в интервал $0.42 \le P_{3...3} \le 0,58$, что соответствует трем оценкам качества (4, 5, 6 баллов) 10-балльной шкалы, предлагаемой МОиН. Последнее позволяет сделать вывод о том, что на точность количественной оценки влияет не только метод оценки, но и исходные данные, характеризуемые в данном случае функцией принадлежности и размерностью задачи. Поскольку функция принадлежности μ выбирается субъективно, то, частично, устранение этого недостатка возможно при систематическом мониторинге показателей, при уточнении и корректировке параметров μ . Набранная статистика ОУ позволит снизить неопределенности, обусловленные недостаточным количеством информации и ее недостаточной надежностью.

В разделе 5.5 приведены общие рекомендации по использованию метода для специалистов, занимающихся проблемами оценки качества.

Основные результаты и выводы

В диссертации предложены модели и алгоритмы многокритериальной оценки решений, учитывающие различные виды неопределенности: лингвистическую неопределенность, нечеткость и неполноту информации. Получены следующие основные научные и практические результаты.

- 1. Разработан формализованный экспертно-аналитический метод в виде пятиэтапной модели для оценки и проектирования качества образовательных систем.
- 2. Для каждого последовательного этапа, направленного на решение практической задачи более высокого уровня, предложены конкретные механизмы, направленные на:
 - выбор критериев и определение их значимости;
 - вычисление обобщенного показателя качества при нечетких значениях критериев и целей с использованием лингвистических переменных;
 - алгоритм выбора приемлемых альтернатив;
 - принятие решения в многокритериальной задаче выбора на основе суммарных взвешенных потерь или обобщенного показателя качества;

- разработку алгоритма принятия решений по проектированию изменений локальных показателей на основе свойств системы;
- 3. Разработан алгоритм интегральной оценки качества менеджмента ОС, позволяющий обеспечить информационную поддержку принятия управленческих решений, а также алгоритмы и методы для решения задач нижнего уровня, где объектами оценки являются отдельные составляющие ОС.
- 4. Разработаны рекомендации для специалистов, занимающихся проблемами качества, по использованию ЭАМ при мониторинге и оценке базовых показателей для принятия управленческих решений на основе полученных данных.
- 5. Разработанный метод показал свою работоспособность и эффективность при многокритериальной оценке качества ОС в НОУ «Невский институт языка и культуры», Брянском государственном технологическом университете, на факультете управления РГПУ им. А. И.Герцена.

Основные положения диссертации опубликованы в следующих работах:

- 1. Добряков А.А., Милова В.М. Экспертно-аналитический метод оценки качества образовательных систем на основе нечетко-множественного подхода //. Качество. Инновации. Образование. −2006. –№6. –С. 36-41.
- 2. Добряков А.А., Милова В.М., Федорова Н.А. Экспертно-аналитический метод оценки качества образовательных систем. // В сб. «Качество, инновации, образование и cals-технологии». Материалы II международного симпозиума 2006, Египет, г. Хургада. М.: Фонд «Качество», 2006, С. 51-55.
- 3. Милова В.М. Опыт внедрения системы менеджмента качества на основе стандартов серии ИСО 9000 // В сб. «Менеджмент XXI века: управление образованием» 2006 г. Материалы VI международной научно практической конференции». –СПб.: ООО «Книжный Дом», 2006, С.196-198.
- 4. Милова В.М., Шульгин Е.А. Использование результатов федерального экзамена профессионального образования в управлении качеством НИЯК // В сб. «HOMO LUDENS как отражение национальной культуры и социального варьирования языка». Материалы международной научно-практической конференции. СПБ.: Изд-во «Осипов», 2006, С. 510-514.

- 5. Милова В.М. Основные этапы разработки и внедрения системы менеджмента качества на основе стандартов серии ИСО 9000 и подходы к выделению процессов // В сб. «НОМО LUDENS как отражение национальной культуры и социального варьирования языка». Материалы международной научно-практической конференции. СПБ.: «Осипов», 2006, С. 26-31.
- 6. Милова В.М. Методика оценивания значимости критериев решения проблемы (на примере системы менеджмента качества вуза) //В сб. «Менеджмент XXI века: управление развитием». Материалы V международной научно-практической конференции. СПб.: ООО «Книжный Дом», 2005. С.204-206.
- 7. Милова В.М., Федорова Н.А. Особенности экспертно-аналитического метода оценки качества // В сб. «HOMO LUDENS как отражение национальной культуры и социального варьирования языка». Материалы международной научно-практической конференции. СПб.: «Осипов», 2006. С.32 –36.
- 8. Добряков А.А., Милова В.М., Чекмарева Н.Н. Особенности управления качеством подготовки в негосударственном гуманитарном вузе на примере Невского института языка и культуры. Труды: выпуск 1 международной научно-методической конференции «Управление качеством в современном вузе». Санкт-Петербург- Калуга, 2004, С. 26-29.
- 9. Милова В.М., Чекмарева Н.Н. Подходы к оценке показателей деятельности гуманитарного негосударственного вуза в управлении качеством // В сб. докладов «Многоуровневая подготовка специалистов в области ВПО в России. Опыт, проблемы, перспективы» IV российского семинара по инженерному образованию. СПб., 2004, С.120 -121.
- 10. Милова В.М., Кокорев В.Ю., Шильникова Л.А. Особенности самооценки Невского института языка и культуры в процессе подготовки к конкурсу «Внутривузовские системы обеспечения качества подготовки специалистов» // В сб. «Санкт-Петербург–полиэтнический мегаполис». Материалы международной научно-практической конференции посвященной 300-летию Санкт-Петербурга. –СПб.: ООО «Теплосеть», 2003, С. 7-12.