МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего профессионального образования НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ «МОСКОВСКИЙ ИНСТИТУТ СТАЛИ и СПЛАВОВ»

На правах рукописи

ПРИПИСНОВ ОЛЕГ НИКОЛАЕВИЧ

СИНТЕЗ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ НА ОСНОВЕ КАРБИДОВ ХРОМА С ПРИМЕНЕНИЕМ ПРЕДВАРИТЕЛЬНОЙ МЕХАНОАКТИВАЦИИ

Специальность 05.16.06 - Порошковая металлургия и композиционные материалы

Диссертация на соискание ученой степени кандидата технических наук

> Научный руководитель: Доктор технических наук, профессор А.С.Медведев

Москва 2015

СОДЕРЖАНИЕ

ГЛАВА 1.АНАЛИТИЧЕСКИЙ ОБЗОР ЛИТЕРАТУРЫ	3
1.1 Диаграмма Cr-C	3
1.2 Термодинамика образования карбидов хрома	7
1.2.1 Термохимические константы	7
1.2.2 Термодинамика карбидов	8
1.3 Способы получения карбидов хрома без применения	метода
предварительной механоактивации	11
1.4 Применение карбидов хрома	16
1.5 Применение предварительной механоакивации шихты для	синтеза
карбидов металлов	17
1.6 Цель и задачи исследования	17
ГЛАВА 2. МЕТОДИКА ЭКСПЕРИМЕНТОВ	
ГЛАВА З. ЭКСПЕРИМЕНТАЛЬНЫЕ ДАННЫЕ	
3.1 Фазовые превращения при механоактивации и отжиге	
3.2 Особенности ДТА-анализа	
3.3 Структурные превращения при механоактивации	
3.4 Термодинамическая оценка возможных реакций	59
3.5 Термодинамическая оценка равновесного состава фаз	64
3.6 Механизм карбидообразования при механоактивации.	
3.7 Изменение характеристик смеси при механоактивации и последу	лющей
высокоскоростной термообработке	78
3.8 Поисковые эксперименты по СВС-компактированию	
ВЫВОДЫ	
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	
Приложение А – Акт полупромышленных испытаний высшего	карбида
хрома Cr ₃ C ₂ в качестве покрытий	97

Глава 1. Аналитический обзор литературы

1.1 Диаграмма Cr-C.

Диаграмма состояния хром-углерод, имеющая большое практическое значение не только для производства металлического хрома, но и для металлургии хромистых сталей и ферросплавов с хромом (рис.1), изучалась в многочисленных работах, обзор которых приведен, например, в монографиях [1] и [2]. Физико-химические свойства углерода подробно описаны, например, в работе[3].

Хром образует с углеродом три карбида: $Cr_{23}C_6$ (содержащий 5,68% C), Cr_7C_3 (9%C) и $Cr_3C_2(13,33\%$ C). По данным ряда исследований [4], при температуре свыше 2270К существует еще один карбид – CrC (18,75% C), разлагающийся при охлаждении на Cr_3C_2 и углерод, однако, его существование экспериментально не подтверждено. По данным работы [5], в присутствии алюминия хром может образовывать комплексный хромоалюминиевый карбид Cr_2A1C ; существование которого подтверждается рентгеноструктурным анализом сплава.

В жидком состоянии хром и углерод неограниченно растворимы. Растворимость углерода в твердом металлическом хроме весьма невелика: по данным [6] растворимость углерода снижается с 0,32% при 1771К до 0,006% при 1170К.

Карбиды хрома нашли весьма широкое применение в технике в связи с тем, что они обладают рядом ценных свойств. Ниже приведены некоторые физико-химические свойства карбидов хрома [2,4,5].

Карбид хрома Cr₂₃C₆ имеет плотность 7,0 *г/см*³. Структура решётки гранецентрированный куб с параметром *a*=10,638Å. Температура плавления 1790К. Теплоемкость при 298К составляет 97,89*дж/град моль*. Температурная зависимость молярной теплоёмкости определяется уравнением:

Рис.1 – Диаграмма состояния Cr-C

$$C_P = 122,88 + 30,98 \cdot 10^{-3}T - 21,010 \cdot 10^{5}T^{2}, \square m/2pad.$$

Теплота образования $Cr_{23}C_6$ в стандартных условиях равна $H_{298} = 108 \ K \partial \mathcal{K} / M onb$, энтропия при 298К – $105,9 \mathcal{J} \mathcal{K} / M onb$. Изменение энергии Гиббса образования карбида хрома из элементов определяется полиномом:

$$\Delta G^{o}_{T}$$
 = -74820 - 2,09*T*, Дж/мольСr₂₃С₆.

Карбид хрома $Cr_{23}C_6$ устойчив до температуры плавления. Средний коэффициент термического расширения в интервале температур 293-1070К составляет 10,1^{-10⁻⁶} *м/м К*. Микротвёрдость под нагрузкой 50г равна 1650 *кг/мм*², твёрдость по Роквеллу–83.

Карбид хрома Cr_7C_3 кристаллизуется в гексагональной решётке с постоянными a=14,01Å и c=4,532Å. Плотность $6,9c/cm^3$; температура плавления 2050К. Теплоёмкость при 298К составляет 209,0Дж/Кмоль. Изменение молярной теплоёмкости с температурой определяется уравнением:

 $C_p = 238,65 + 60,2110^{-3}T - 42,30310^{5}T^{2}$ Дж/град.

Теплота образования Cr_7C_3 при стандартных условиях $H_{298} = 178020 Дж/моль$, энтропия при 298К равна 201 Дж/К моль. Температурная зависимость изменения энергии Гиббса образования Cr_7C_3 определяется уравнением:

 ΔG^{o}_{T} = -183630 - 19,70*T*, Дж/мольСr₇C₃.

Средняя величина коэффициента термического расширения карбида Сr₇C₃ в интервале температур 290–1070К равна 10,0^{-10⁻⁶} *м/м град*. Микротвёрдость при нагрузке 50г составляет 2100 *кг/мм*². Твёрдость по Роквеллу– 67.

Карбид хрома Cr_3C_2 кристаллизуется в орторомбической системе. Параметры кристаллической решётки: a=2,821Å, b= 5,53Å и c = 11,47Å. Плотность Cr_3C_2 равна 6,7 c/cm^3 . Температура плавления 2168К, температура кипения 4070К. Теплоёмкость при 298К равна 108,40Дж/Кмоль. Изменение теплоёмкости с температурой определяется уравнением: $C_P = 125,73 + 23,36 \ 10^{-3}T - 30,966 \ 10^{5}T^{-2}, Дж/К.$

Теплота образования карбида хрома Cr_3C_2 в стандартных условиях H_{298} =-87960Дж/моль, энтропия – 85,4Дж/Кмоль. Температурная зависимость изменения энергии Гиббса при протекании реакции образования карбида Cr_3C_2 из элементов выражается уравнением: $\Delta G^0_T = -84030 - 11,93T$, Дж/моль Cr_3C_2 .

Средний коэффициент термического расширения в интервале температур 290–1070К составляет 10,3^{•10⁻⁶}*м/м град*. Микротвёрдость– 2700 *кг/мм*², твёрдость по Роквеллу – 81. Предел прочности на растяжение при 1170К и выдержке 10 ч равен5 *кг/мм*², при 1270К и выдержке 100 ч – 7 *кг/мм*². Предел прочности на сжатие при 293К равен 104,8 *кг/мм*², при 1670К – 42,1 *кг/мм*². Модуль упругости – 38 т/*мм*².

Карбиды хрома весьма стойки к окислению: если сопротивление окислению при 1170К у карбида ниобия составляет 205 $c/m^{2.} q$, у карбида титана 12,1 $c/m^{2.} q$, у карбида вольфрама - 1140 $c/m^{2.} q$, то для карбида хрома эта величина составляет всего 0,66 $c/m^{2.} q$ [4].

Промышленное производство карбидов хрома (в виде порошков) осуществляется путем карбонизации смеси окиси хрома с углеродом при высоких температурах в атмосфере водорода. По данным [4], при карбонизации в течение 1 -1,5 u в водороде при 1870К получается карбид хрома, содержащий 96,4% Cr₃C₂ и 0,15% свободного углерода.

Такие свойства карбида хрома, как высокая твёрдость при комнатных и высоких температурах, весьма высокое сопротивление окислению, стойкость против абразивного износа и коррозии, обеспечили широкое применение карбидов хрома в металлокерамических сплавах и для других целей.

1.2 Термодинамика образования карбидов хрома.

1.2.1. Термохимические константы

Карбиды хрома относятся к соединениям с ковалентнометаллическими связями и в сравнении с карбидами IV и V групп элементов имеют более сложные кристаллические структуры, что определяет, в частности, поведение их компонентов при нагревании. Так, структура $Cr_{23}C_6$ по данным [7] образуется путём внедрения атомов углерода в решётку металла (хотя карбиды хрома и не являются фазами внедрения $r_c/r_{cr}=0,61$), вследствие чего формируются сложные комплексы, объединённые в соответствующие группы.

Теплоёмкость, $Д \mathcal{H} (K M onb)$, карбидов хрома в интервале 298 –1700К по данным [8] описывается уравнением вида $C_P = a + bT + cT^2$, где *a*, *b* и с принимают значения:

Карбид	Cr ₃ C ₂	Cr ₇ C ₃	$Cr_{23}C_6$
a	125,83	251,23	122,98
$b 10^3$	23,38	60,92	31,01
$c^{-}10^{-5}$	- 31,26	- 42,40	- 21,03

Авторы работы [7] для температурной зависимости *С*_{*P*}(T), *Дж*/(*К*[•]*моль*), приводят несколько отличные выражения:

- для карбида Cr₇C₃ *C_P* =238,83 + 60,25[·]10⁻³*T* - 42,07[·]10⁺⁵*T*⁻¹, - для карбида Cr₂₃C₆ *C_P*(Cr₂₃C₆)=708,61 + 178,66[·]10⁻³*T*-121,15[·]10⁺⁵*T*⁻². Зависимость энтальпии, *Дж/моль*, карбидов от температуры по обобщённым в монографии [7] данным может быть представлена уравнениями:

- для карбида Cr₃C₂ (300-1200 K) *H⁰_T*-*H⁰₂₉₈*=109,74*T*+19,86⁻10⁻³*T*+19,78⁻10⁵*T*⁻-38703,03;

- для карбида Cr₇C₃ (298-1500К) $H^0_T - H^0_{298} = 238,83T + 30,13 \cdot 10^{-3}T^2 + 42,34 \cdot 10^{+5}T^1 - 88 \, 090,56;$ - для карбида Cr₂₃C₆ (470-1700К) $H^0_T - H^0_{298} = 708,61T + 89,33 \cdot 10^{-3}T^2 + 121,15 \cdot 10^{+5}T^1 - 2598,785.$

Стандартные теплоёмкость и энтропия карбида Cr_3C_2 , $\mathcal{Д}\mathcal{H}(K \text{моль}): C_P = 98,89, S_{298} = 85,48 \pm 0,8.$ Значения C_P , H^0_T , H^0_{298} и S^0_T карбидов Cr_7C_3 и $Cr_{23}C_6$ приведены в табл. 1.

Таблица1. Теплоёмкость, теплосодержание и энтропия карбидов хрома в зависимости от температуры [7]

Т,К	<i>С_Р, Дж/(</i>	Смоль)	Н ⁰ _T -Н ⁰ 298 Дж/моль		S^{0}_{T} , Дж/(К ⁻ моль)		
	Cr ₇ C ₃	$Cr_{23}C_6$	Cr ₇ C ₃	$Cr_{23}C_6$	Cr_7C_3	$Cr_{23}C_6$	
298	209,15	625,15			201,16	609,56	
500	254,081	751,39	47,837	141 747,7	322,63	969,48	
1000	254,24	865,99	184695	547675	510,93	1528,43	
1500	343,45	999,36	324574	1011.885	642,41	1903,31	
2000	421,77	1183,42	532633	1555411,8	747,04	2214,58	

1.2.2. Термодинамика карбидов

Определение теплоты образования карбидов хрома было предметом многих исследований с использованием калориметрии или других методов.

В большинстве случаев данные получены косвенными методами при термодинамическом анализе реакций с участием карбидов хрома. Наиболее часто применяющиеся методики нахождения теплоты образования карбидов хрома предусматривали достижение равновесия в системах $Cr_{23}C_6$ -H₂-CH₄, Cr_2O_3 -C- Cr_3C_2 , а также испарение карбидов хрома методом э.д.с. с использованием разных ячеек и др.

Некоторые авторы изучали термодинамику реакций в системе Cr-O-C:

$$3Cr_{2}O_{3} + 13C = 2Cr_{3}C_{2} + 9CO,$$

$$5Cr_{2}O_{3} + 27Cr_{3}C_{2} = 13Cr_{7}C_{3} + 15CO,$$

$$Cr_{2}O_{3} + 3Cr_{7}C_{3} = Cr_{23}C_{6} + 3CO,$$

$$2Cr_{2}O_{3} + Cr_{23}C_{6} = 27Cr + 6CO.$$

и на основании этих данных рассчитывали стандартные значения теплот образования и энергии Гиббса приведённых реакций с участием карбидов хрома.

Авторы работы [9] нашли H^{0}_{298} и S^{0}_{298} путем изучения равновесия реакций:

$$^{23}/_{27}Cr_7C_3 + 2H_2 = CH_4 + ^7/_{27} Cr_2C_6,$$

 $^7/_5Cr_3C_2 + 2H_2 = ^3/_5Cr_7C_3 + CH_4,$
 $CH_4 + H_2O = CO + 3H_2.$

В работе [10] изучена термодинамика карбидов методом э.д.с. с использованием ячейки Cr, Cr₂O₃|| ThO₂-Y₂O₃||Cr₃C₂, Cr₂O₃, C.

Рекомендованы следующие значения теплот образования карбидов хрома, *кДж/моль*[166]:

 $H^{0}_{298}(Cr_{23}C_{6}) = 411,9+42, H^{0}_{298}(Cr_{7}C_{3}) = 184,36\pm42,$ $H^{0}_{298}(Cr_{3}C_{2}) = 97,2\pm42.$ Из обобщённых данных [8] следует, что в термодинамических расчётах надо использовать следующие наиболее вероятные значения теплот образования карбидов хрома:

Карбид хрома Cr₄C (Cr₂₃C₆) Cr₇C₃ Cr₃C₂ $H^{0}_{298}, \kappa Дж/моль$ -98,5±8,4 -228,36 ±10,48 -109,8 + 8,4 В работе [11] представлены результаты изучения методом

высокотемпературной калориметрии в системе Cr-C термодинамики карбидов составов $Cr_{0,793}C_{0,207}$ (Cr₂₃C₆), $Cr_{0,7}C_{0,3}(Cr_7C_3)$ и $Cr_{0,6}C_{0,4}$ (Cr₃C₂) соответственно кубической (*Fm*3*m*, a=1,068 нм), гексагональной (*P*31*C*,a=1,401, c=0,453 нм) и орторомбической (a=1,147, b=5,545 и c=0,283 нм) структур. Результаты этих опытов в обобщенном виде представлены в табл. 2

Таблица 2. Изменения энтальпии образования $\Delta_f H$, Дж/моль при 1753К; энтропии образования $\Delta_f S$ при 1500К и энтропии плавления ΔS_m ,

Состав карбида Cr	По да	По данным [12]			
	$-\Delta H$	ΔS	ΔS_m	$-\Delta H$	ΔS
$Cr_{0,793}C_{0,207}(Cr_{23}C_6),$	9416-9401; 9248	2,45 - 3,2; 3,79	18,1	11083	2,495
$Cr_{0,7}C_{0,3}(Cr_7C_3)$	10693-11071; 10791	3,81-5,6; 6,48	21,0	14723	3,198
$Cr_{0,6}C_{0,4}(Cr_3C_2)$	9956-10375; 10097	3,83 - 5,75; 6,43	25,4	16267	2,464

Дж/(Кмоль) карбидов хрома

Полученные численные значения величин *H*⁰и *S*⁰достаточно хорошо совпадают с данными работ [12].

Опубликованные в литературе выражения для определения стандартных энергий Гиббса реакций образования карбидов хрома существенно различаются.

Автор работы [13] рекомендовал следующие уравнения $\Delta G(T)$, Дж/моль: ${}^{1}/_{6}\Delta G^{0}_{T}(\operatorname{Cr}_{23}\operatorname{C}_{6}) = -53770 - 12,78T (\pm 1200)$ (1150-1300 K), $\Delta G^{0}_{T}({}^{7}/_{27}\operatorname{Cr}_{23}\operatorname{C}_{6} \rightarrow {}^{23}/_{27}\operatorname{Cr}_{7}\operatorname{C}_{3}) = -125637 - 31,05T (\pm 400)$ (1100-1720 K), $\Delta G^{0}_{T}({}^{3}/_{5}\operatorname{Cr}_{7}\operatorname{C}_{3} \rightarrow {}^{7}/_{5}\operatorname{Cr}_{3}\operatorname{C}_{2}) = -41229 - 11,06T (\pm 400)$ (1300-1500 K).

Стандартные энергии Гиббса образования Cr_7C_3 и Cr_3C_2 определяли с использованием следующих гальванических элементов [14]. Cr, $Cr_{23}C_6$ || BaF₂ – BaC₂|| $Cr_{23}C_6$, Cr_7C_3 (920- 1250K) (A) $Cr_{23}C_6$, Cr_7C_3 ||BaF₂ – BaC₂ ||W,WC (900-1200K) (Б)

W,WC $||BaF_2 - BaC_2||Cr_3C_2, Cr_7C_3$ (973-1173K) (B)

Из результатов измерений э.д.с. ячеек, а также с использованием данных предыдущих исследований авторы [14] рассчитали $\Delta G(T)$ реакции образования карбидов из элементов 7Cr + 3C= Cr₇C₃ (ячейка A):

 $\Delta G^{\theta}_{f}(\mathrm{Cr}_{7}\mathrm{C}_{3}) = -155\ 410(\pm\ 173)\ -\ 35,8(\pm\ 0,1)T,$

а также реакции 3Cr+2C=Cr₃C₂ (ячейка В):

 $\Delta G^{\theta}_{f}(Cr_{3}C_{2}) = -92860(\pm 210) - 19,4(\pm 0,2)T.$ (B)

1.3 Способы получения карбидов хрома без применения метода предварительной механоактивации

Наиболее распространённый метод получения карбидов хрома – взаимодействие оксида с сажей по реакциям:

 $3Cr_2O_3 + 13C = 2Cr_3C_2 + 9CO;$ $7Cr_2O_3 + 27C = 2Cr_7C_3 + 21CO;$ $23Cr_2O_3 + 81C = 2Cr_{23}C_6 + 69CO.$

Равновесие системы Cr₂O₃-C-CO-Cr_xC_y впервые изучали в работе [15].

При производстве твердых сплавов на основе Cr_3C_2 [16,17] брикеты из шихты, состоящей из 74% Cr_2O_3 и 26% сажи, нагревают при температуре 1600°С в электрической печи сопротивления в среде водорода. Этот метод приводит к образованию продуктов смешанного состава, содержащих до 30% низших карбидов.

Изучение условий приготовления карбида Cr_3C_2 описанным методом [18] показало, что карбид, близкий по составу к Cr_3C_2 , получается в интервале температур 1400-1600°С. При температуре 1400°С образуется карбид, содержащий значительное количество примесей в виде низших карбидов, при температуре выше 1600°С карбид разлагается и обезуглероживается.

Процессы получения карбидов хрома восстановлением оксида хрома углеродом изучали в работах [19–24].

Подробное исследование условий и механизма получения однофазного карбида Cr_3C_2 [22,25] показало, что процесс образования карбида начинается при температуре 1150-1200°C и идёт через стадии образования низших карбидов. При температурах 1500-1600°C образуется однофазный карбид Cr_3C_2 , практически не содержащий свободного углерода. Повышение температуры выше 1600°C приводит к получению продуктов, содержащих значительные количества низшего карбида Cr_7C_3 и свободного углерода. Такое явление разуглероживания при высоких температурах связано с тем, что при увеличении температуры выше 1600°C одновременно со скоростью образования карбида возрастает скорость графитизации сажи, в результате чего упругость паров ацетилена при данной температуре становится ниже равновесной, соответствующей расчётному содержанию связанного в Cr_3C_2 углерода. Происходит частичное разуглероживание и превращение части Cr_3C_2 в карбид Cr_7C_3 с более низким содержанием углерода.

Исследование влияния температуры, длительности восстановления и состава шихты позволило уточнить режим получения однофазного карбида Cr_3C_2 , который сводится к тому, что брикеты из шихты расчётного состава с добавкой 5% раствора декстрина нагревают в печи сопротивления с графитовыми нагревателями при постепенном подъёме температуры до 1500°C в течение 30- 40мин и выдержке при этой температуре 1,5-2 ч.

Исследование условий получения карбида Cr₇C₃ [22,23,25] восстановлением оксида хрома сажей по реакции:

$$7Cr_2O_3 + 27C = 2Cr_7C_3 + 21CO$$

показало, что оптимальная температура 1200-1300°С и состав шихты, содержащей 97 - 98% сажи от расчётного состава.

Целесообразно получать карбид Cr_7C_3 в две стадии. Брикеты шихты нагревают при температуре 1200 $-1300^{\circ}C$ в течение 1-1,5 *ч*, затем измельчают и снова нагревают при той же температуре в течение 20 - 30 *мин*.

Получение однофазного низшего по содержанию углерода карбида Cr₂₃C₆ [24] восстановлением Cr₂O₃ углеродом затруднено, так как оно тормозится образованием термодинамически более устойчивых высших карбидов.

Исследования кинетики и механизма процессов восстановления окиси хрома в вакууме [26-28] показали, что процесс происходит за счёт выделяющейся окиси углерода и носит автокаталитический характер – скорость восстановления в начальный период быстро растёт, достигает максимума и медленно уменьшается.

На основании этого сделан вывод, что в начальный период восстановления окиси хрома лимитирующей стадией является кристаллохимическая перестройка окисла в металлический хром или карбид. Затем растёт роль газификации углерода, и реакция чувствительна ко всем параметрам, влияющим на скорость регенерации окиси углерода. К концу реакционной процесса восстановления, когда поверхность зоны уменьшается, роль этого фактора снова падает.

В работе [29] получены все три карбида хрома взаимодействием окиси хрома с сажей в вакууме. Карбид Cr_3C_2 получали нагреванием шихты Cr_2O_3 с сажей в молярном соотношении 3 : 13 при температуре 1150 - 1200°С, Cr_7C_3 - нагреванием шихты Cr_2O_3+C в молярном соотношении 7 : 27 при 1200-1250°С и $Cr_{23}C_6$ нагреванием Cr_2O_3 с сажей в молярном соотношении 2:7 при температуре 1250 -1300°С.

Более поздние исследования условий получения карбидов хрома в вакууме показали, что карбид Cr_3C_2 , близкий по составу к расчётному, образуется при температуре 1400-1500°C, при температуре 1150- 1200°C образуются продукты, содержащие смесь всех карбидов и оксида хрома.

Получение карбидов хрома в вакууме требует использования более сложной аппаратуры, чем получение их в среде водорода, и более длительно, а потому и нецелесообразно для промышленного использования.

Синтезом из элементов карбиды хрома были получены в работах [30-33].

Получить чистый однофазный карбид $Cr_{23}C_6$ синтезом из элементов так же, как и восстановлением оксида хрома сажей, не удалось. Этот карбид, близкий по составу к расчётному и не содержащий высших по содержанию углерода карбидов и оксидов, получен при взаимодействии высшего карбида с оксидом хрома по реакции $Cr_2O_3+Cr_3C_2-Cr_{23}C_6+CO$ в вакууме при температуре 1200°C.

В работе [34] карбид Cr₃C₂ получен науглероживанием хрома метаном в присутствии водорода при температуре 600-800°С, согласно реакции

 $Cr + H_2 + CH_4 - Cr_3C_2 + H_2 + (CH),$

где символом (СН) обозначены продукты разложения углеводородов.

Очень твёрдые и износостойкие покрытия на поверхности железа, состоящие в основном из Cr_3C_2 , получены разложением карбонила хрома в присутствии водорода при температурах от 250 до 850°C [35].

В работе [36] получали карбидохромовые покрытия, для чего образцы армко-железа, стали 18ХНМА и стали ХГ подвергали электролитическому хромированию в ванне, содержащей 150 г CrO₃ и 1,5 г H₂SO₄ на 1л воды при плотности тока 35А/дм², температуре электролита 50°С и продолжительности электролиза 3ч. Хромированные образцы подвергали карбидизации в вертикальной трубчатой печи при пропускании смеси паров бензина и водорода при температурах 950 и 1050°С в течение 3 и 8ч.

Покрытия состоят из наружного тонкого слоя карбида Cr_3C_2 , среднего толстого слоя карбида Cr_7C_3 и сравнительно тонкого слоя карбида $Cr_{23}C_6$. Под этим слоем находится слой остаточного непрокарбидизированного хрома.

Позже, исследовали условия получения и свойства покрытий [37], образующихся при газовой карбидизации электролитического хрома, осаждённого на стали в токе смеси паров бензина с азотом.

Металлографический и рентгеноструктурный фазовый анализы подтвердили наличие трёх фаз, расположенных слоями: внешний тонкий слой высшего карбида Cr₃C₂, средний толстый слой карбида Cr₇C₃, и внутренний тонкий слой нитрида Cr₂N.

Реакционная диффузия в системе Cr–N–C проходит как диффузия атомов азота и углерода через образующийся слой к металлу. Так как атомный радиус азота меньше, чем углерода, диффузионная подвижность его атомов более высокая, чем атомов углерода, и он проникает вглубь металла с большей скоростью, чем углерод.

Износостойкий слой карбида хрома наносили на поверхность стальных изделий осаждением хрома из газообразных соединений с последующим взаимодействием его с углеродом, находящимся в поверхностном слое изделия.

Многочисленные исследования посвящены выделению карбидов из ферросплавов и сталей, основанному на разной растворимости карбидов и металлических составляющих. Найдено [38], что при электролитическом растворении хромистой стали в соляной кислоте плотностью 1,02 нерастворимый остаток состоит из смеси железа и хрома.

Из хромистых сталей выделены карбиды Cr_7C_3 и $Cr_{23}C_6$ [39], из хромомарганцевых – Cr_7C_3 [40] и хромоникелевых – $Cr_{23}C_6$ [41].

Все эти методы, представляя значительный теоретический интерес, не применяют в промышленных масштабах.

Исследование условий приготовления плотных образцов методом горячего прессования [42] позволило получить образцы плотностью 99– 99,5% при температуре 1750°C и удельном давлении прессования 1500 Mh/m^2 (150 $\kappa\Gamma/cm^2$). При этом содержание низшего по содержанию углерода карбида Cr₇C₃ растёт от 5% в исходном порошке до 15%.

1.4 Применение карбидов хрома.

Применение карбида хрома Cr_3C_2 в производстве твёрдых сплавов ограничено из-за его высокой растворимости в кобальтовой связке. Он с успехом служит присадкой в твёрдые сплавы с малым содержанием карбида вольфрама и в жаропочных и окалиностойких сплавах в виде добавки к карбиду титана. Металлокерамические твёрдые сплавы карбид хрома – никель применяют в качестве кислотоупорных материалов в химической промышленности и для изготовления износостойких деталей. Они конкурируют в этом отношении с твёрдыми сплавами WC–Ni–Cr и TiC–Ni(Co)–Cr.

В связи с высокой температурой плавления, твёрдостью, сохраняющейся при высоких температурах и химической стойкостью высший карбид хрома Cr_3C_2 применяется как компонент наплавочных сплавов, а также твёрдых сплавов, используемых для изготовления сопел, штампов, высокотемпературных подшипников, пресс-форм для прессования латунных профилей, наконечников пескоструйных аппаратов, вкладышей в крупногабаритные матрицы для протяжки труб [43,44-46].

В связи с высокой стойкостью по отношению к различным химическим реагентам и стойкостью против окисления карбид хрома Cr_3C_2 применяется в фильтрах в химической промышленности, в электродах (при электрохимических процессах), в подшипниках и уплотнениях в насосах, подающих солёную воду под большим давлением при промывке нефтяных баков морских танкеров, в деталях насосов для перекачки кислот, в соплах для агрессивных жидкостей и газов [45-47].

Из-за каталитических свойств карбиды Cr₃C₂ и Cr₇C₃ применяются как катализаторы в процессах органического синтеза [48].

Имея металлический характер проводимости и малый температурный коэффициент электросопротивления, карбид хрома $Cr_{23}C_6$ применяется в качестве компонента постоянных низкоомных сопротивлений, работающих при температурах 300-400[°]C с максимальными значениями сопротивления 5-50 ом [49].

1.5 Применение предварительной механоактивации шихты для синтеза карбидов металлов.

Из изложенного выше очевидно, что получение карбидов хрома из элементов требует достижения высоких температур до 1400-1600°С и, соответственно, сложного аппаратурного оформления.

Методом, способствующим снижению температуры взаимодействия и наиболее полному взаимодействию при получении карбидов металлов, в том числе VI группы, из элементов является метод предварительной механоактивации смеси элементов.

Как показали авторы [50] при применении предварительной механоактивациисмеси W-C при увеличении продолжительности активации температура начала взаимодействия шихты снижалась с 935°C (для шихты, активированной 5 мин) до 800°C(для шихты, активированной 20 мин).

1.6 Цель и задачи исследования

Исследование посвящено оптимизации полного взаимодействия углерода с хромом С получением высшего карбида хрома стехиометрического состава, снижению температуры такого взаимодействия и его длительности. Другая цель выполненной работы – выяснение механизма карбидообразования (получения карбидов хрома) как в ходе и после механоактивации исходной смеси порошков углерода и хрома, так и

при высокотемпературном синтезе. Практическая задача – упрощение технологии производства карбида хрома Cr₃C₂.

Глава 2. Методика экспериментов

Для исследований использовали порошки хрома (марка ПХ-1) и углерода (ламповая сажа, марка П80ЧТ), аргон газообразный высокой чистоты ТУ 6-21-12-94. Механическое активирование исходной шихты в соотношении (% по массе) Cr : C = 86,7 : 13,3 (из расчёта образования Cr₃C₂) осуществляли в центробежной планетарной мельнице (ЦПМ) ЛАИР-0.015 при следующих условиях: рабочий объём барабана – 250 см³; частота вращения водила – 548 мин⁻¹; центростремительное ускорение по оси барабана – 25 g; частота вращения барабана – 1370 мин⁻¹; соотношение шаровая загрузка : шихта по массе в г: 200:10, 200:5. Длительность механоактивации набиралась дискретно: измельчение в течение 3 мин и охлаждение перед следующим измельчением 10 мин.

Высокотемпературное взаимодействие неактивированных И активированных проводили компонентов шихты на установке дифференциально-термического анализа (ДТА), позволяющей избегать отжига дефектов за счёт высокоскоростного нагрева. Нагрев происходил в атмосфере аргона. Установка ДТА состоит из блока-держателя пробы и эталона, в который вставлены соединенные дифференциально хромельалюмелевые термопары, а сам блок-держатель помещен в кварцевую трубу. Через трубу, для предотвращения окисления шихты в процессе ДТА, пропускали аргон. Нагрев блока-держателя с образцом и эталоном осуществляли печью сопротивления, регулировку напряжения, подаваемого на печь, производили с помощью лабораторного трансформатора (ЛАТР). Печь нагревали до определенной температуры (900[°]C) в верхнем положении, выше уровня образца и эталона, и затем опускали до уровня образца и эталона, что обеспечивало высокую скорость нагрева (~ от 3,5 до 6°C/с).

Установка ДТА позволяла фиксировать температуру взаимодействия компонентов и рассчитывать величину тепловыделений.

Рентгеновский качественный и количественный фазовый анализы шихт после механоактивации и ДТА производили на автоматизированном дифрактометре ДРОН-4.0 с шагом $0,1^{\circ}$ и экспозицией на точку 6 с (U_{ahog} = 40 кВ, I = 30 мА), с применением СиК α -излучения. Оценку объёмных долей фаз, параметров их решёток и размеров блоков мозаики проводили упрощённым методом Ритвельда [51,52] (аппроксимация экспериментального спектра линейной комбинацией теоретических спектров фаз и полиномиального фона) с применением ЭВМ и использованием для качественного анализа программы PHAN, а для количественного анализа программы PHAN %.

Измерение содержания кислорода и азота в шихте после механоактивации и ДТА выполняли на приборе фирмы «LECO» TC-136 (США) методом восстановительного плавления в индукционной печи при температуре до 3000°C в среде инертного газа-носителя гелия. Кислород измерялся инфракрасным детектированием, азот – по коэффициенту теплопроводности.

Содержание железа И других элементов В шихте после механоактивации определяли качественным спектральным анализом с использованием спектрографа с плоской дифракционной решёткой PGS-2 (фирмы Карл Цейс, Германия). Возбуждение спектров производили с помощью генератора ИВЭ-1 в дуговом режиме. Спектры регистрировали на фотопластинку и расшифровывали визуально под спектропроектором PS-2 с таблиц привлечением атласа И спектральных линий И других вспомогательных пособий.

Общий и свободный углерод в шихте после механоактивации и ДТА анализировали методом пиролитического сожжения навески анализируемой шихты в токе кислорода.

Общий углерод определяли сожжением навески образца с окисью свинца в кварцевой лодочке при температуре 1100°С. Образующийся при этом диоксид углерода поглощали аскаритом, который затем взвешивали.

Свободный углерод определяли сожжением навески анализируемого продукта в токе кислорода в кварцевом стаканчике, заполненным дроблёным кварцем, при температуре 600°С. Образующийся диоксид углерода поглощали аскаритом и определяли гравиметрически.

Карбидный углерод вычисляли как разницу между общим и свободным углеродом.

Структуру образцов исследовали на сканирующем электронном микроскопе LEO-EVO-40 при токе через образец ~10⁹A и ускоряющем напряжении от 20 до 35 кВ.

Термодинамический анализ возможных взаимодействий в системе Cr-C осуществляли на ЭВМ с использованием программы ИВТАНТЕРМО.

Теоретический расчёт равновесных составов фаз в системе Cr-C проводили на ЭВМ с использованием программы ThermoDyn 3,5.

Удельную поверхность образцов хром-углерод определяли методом БЭТ по адсорбции аргона при температуре жидкого азота (табл. 1). Перед измерением колбу с образцом откачивали при комнатной температуре до 10-2 мм.рт. ст.

Образец	${ m S}_{ m yd},~{ m m}^2/{ m r}$
хром исходный	0.14
сажа исходная	8.4
длительность механоактивации смеси хрома и сажит _а =9мин	4.0
τ _а =21 мин	10.3
τ _а =30 мин	6.1
τ _а =33 мин	1.6
τ _а =43 мин	3.7
τ _а =30мин+ДТА	2.8

Таблица 1. Результаты измерений удельной поверхности

Рост Cr+C удельной поверхности смеси на первом этапе механоактивации связан с измельчением рентгеноаморфного углерода. По данным РФА после 30 минутного помола появляются карбидоподобные структуры, что ведёт в дальнейшем к резкому уменьшению S_{уд.} В процессе ДТА смеси, активированной в течение 30 мин неизбежно происходит карбидообразование, соотвествующим уменьшением С удельной поверхности. Дальнейшая механоактивация (43 мин) приводит к росту поверхности образовавшегося карбида.

Для идеализированного случая, когда частицы представляют собой кубики с длиной ребра *L*, *S_{vo}* равна:

$$S_{\nu\partial} = 6/\rho L \tag{1}$$

где *р* - плотность твёрдого тела.

Эту формулу можно использовать для приблизительной оценки среднего размера частиц (табл. 2).

Вещество и способ обработки	$S_{y\partial}$ м 2 /г	<i>р</i> , г/см ³	Размер частиц,рассчитанный по формуле (1) мкм
Cr	0,14	7,16	-600
С	8,4	1,8-2,10	-40
Cr ₂ C ₃		6,68	
мех.обраб. 9мин	4,0		-20
мех.обраб. 30мин	6,1		15
мех.обраб. 21 мин	10,3		9

Таблица 2. Характеристика исходных и конечных веществ

Глава 3. Экспериментальные данные

3.1. Фазовые превращения при механоактивации и отжиге

Изучено влияние продолжительности механоактивации от 0 до 43 мин смеси Cr-C при соотношении (% по массе) Cr:C=86,7:13,3 при соотношениях шары : материал (ш:м) 200:10 и 200 : 5, на удельную поверхность, энергию открытой поверхности, размер и структуру частиц. Определена температура начала взаимодействия Cr с C после механообработки и после механообработки и высокоскоростной термообработки до 1000°C. Оценена длина диффузионного пути углерода в хроме при механоактивации и высокоскоростной термообработке до 1000°C, а также тепловые эффекты экзотермических реакций.

При механоактивации смеси Cr-C, по данным РФА в ней после механоактивации в течение 30 мин присутствует в основном хром, и рентгеноаморфный углерод. При $\tau_a>30$ мин происходит образование зародышевых структур, напоминающих структуры карбидов хрома $Cr_{23}C_6$, Cr_7C_3 , Cr_3C_2 . По-видимому, образование карбидов хрома в активаторах происходит дискретно. Чем дальше шихта находится от мест прямого соударения шаров, тем меньше энергия воздействия на шихту и больше вероятность образования низших карбидов хрома $Cr_{23}C_6$, Cr_7C_3 .

Данные РФА механически активированной шихты Cr-C (соотношение ш:м = 200:10 и 200:5) и после высокоскоростной термообработки (ДТА) представлены в табл. 3-10.

Таблица 3. Фазовый состав механически активированной шихты Cr-C (соотношение ш:м = 200:10)

Продолжительность активации мин.	Содержание хрома, (% об)*	Данные, рассчитанные по программе PHAN (% масс.)			
		Cr	Cr_3C_2	Cr ₇ C ₃	Cr ₂₃ C ₆
21	100,0				
30	92,6				
33	64,3	54,2	7,2	35,5	3,1
43	37,6	36,7	17,1	37,6	8,6

*- данные по отношению интенсивности линии (002) α-Cr к интенсивности линии (111)

Ni-эталона

Необходимо заметить, что в ходе механоактивации не весь углерод успевает прореагировать. Часть его (от 6 до 9%) остаётся в свободном виде.

Таблица 4. Содержание хрома (% об.) и карбидов хрома (% вес.) в шихте

после механоактивации (соотношение ш:м = 200:10)

в зависимости от продолжительности активации по данным РФА с учётом

свободного углерода

Продолжительность активации, мин.	Содержание хрома, % об.*	PHAN % (% масс.)				
		Cr	Cr_3C_2	Cr ₇ C ₃	$Cr_{23}C_6$	С
21	100,0					
30	92,6					
33	64,3	49,2	6,5	32,2	2,8	9,3
43	37,6	33,9	15,8	34,7	8,0	7,6

*- данные по отношению интенсивности линии (002) α-Cr к интенсивности линии (111) Ni-эталона

Таблица 5. Фазовый состав механически активированной шихты Cr-C после высокоскоростной термообработки до 1000°C (соотношение ш:м = 200:10)

Продолжительность	Содержание фаз, %					
активации, мин.	Cr ₃ C ₂	Cr ₇ C ₃	Cr ₂₃ C ₆	Cr ₂ O ₃	Cr	
0	8,9	15,2	7,6	0	68,3	
9	13,4	19,5	14,4	2,5	50,2	
12	13,0	50,0	8,7	4,9	23,4	
15	24,6	49,7	8,9	4,7	12,1	
18	20,1	54,0	6,1	7,3	12,5	
21	53,3	31,0	3,1	7,1	5,5	
24	49,7	33,7	4,6	5,6	6,4	
27	79,7	14,3	0	6,0	0	
30	78,1	14,9	0	7,0	0	
33	72,6	21,6	0	5,8	0	
36	74,5	20,4	0	5,1	0	
40	80,6	15,6	0	3,8	0	
43	79,2	17,6	0	3,2	0	

Таблица 6. Фазовый состав механически активированной шихты Cr-C после высокоскоростной термообработки до 1000°C с учётом свободного углерода (соотношение ш:м = 200 : 10)

Продолжительность		Содержание фаз, %					
активации, мин.	Cr ₃ C ₂	Cr ₇ C ₃	$Cr_{23}C_6$	Cr ₂ O ₃	Cr	С	
0	8,0	13,6	6,8	0	61,0	10,6	
9	12,2	17,7	13,1	2,3	45,5	9,2	
12	12,1	46,5	8,1	4,6	21,8	6,9	
15	23,3	47,1	8,4	4,5	11,5	5,2	
18	19,0	51,0	5,7	6,9	11,8	5,6	
21	51,6	30,0	3,0	6,9	5,3	3,2	
24	47,9	32,5	4,4	5,4	6,2	3,6	
27	78,7	14,1	0	5,9	0	1,3	
30	77,0	14,7	0	6,9	0	1,4	
33	71,4	21,2	0	5,7	0	1,7	
36	73,4	20,1	0	5,0	0	1,5	
40	79,7	15,4	0	3,8	0	1,1	
43	78,3	17,4	0	3,2	0	1,1	

Таблица 7. Состав механически активированной шихты

Сг-С (соотношение ш:M = 200:5)

Продолжительность	Содержание фаз, %					
активации, мин.	Cr	Cr_3C_2	Cr_7C_3	Cr_2O_3	Cr ₆ NC ₃	
18	100	0	0	0	0	
24	100	0	0	0	0	
30	60	0	32,7	7,3	0	
36	15,8	28,5	41,1	2,1	12,5	

Таблица 8. Фазовый состав механически активированной шихты Cr-C с учётом свободного углерода (соотношение ш:м = 200:5)

Продолжительность		Содержание фаз, %					
активации, мин.	Cr	Cr ₃ C ₂	Cr ₇ C ₃	Cr ₂ O ₃	Cr ₆ NC ₃	С	
18	86,7	0	0	0	0	13,3	
24	86,7	0	0	0	0	13,3	
30	53,7	0	29,3	6,5	0	10,5	
36	15,0	27,1	39,1	2,0	11,9	4,9	

Таблица 9. Фазовый состав механически активированной шихты

Cr-С после высокоскоростной термообработки до 1000°С (соотношение ш:м

= 200:5)

Продолжительность	Содержание фаз, %		
активации, мин.	Cr_3C_2	Cr_7C_3	Cr_2O_3
18	37,2	52,6	10,2
24	45,0	48,0	7,0
30	35,1	55,6	9,3
36	40,9	53,1	6,0

Таблица 10. Фазовый состав механически активированной шихты Cr-C после высокоскоростной термообработки до 1000°C с учётом свободного углерода (соотношение ш:м = 200:5)

Продолжительность	Содержание фаз, %			
активации, мин.	Cr_3C_2	Cr ₇ C ₃	Cr ₂ O ₃	С
18	35,9	50,7	9,8	3,6
24	43,6	46,6	6,8	3,0
30	33,8	53,6	9,0	3,6
36	39,6	51,4	5,8	3,2

Достоверность данных РФА подтверждается данными анализа механически активированной в течение 33 мин шихты на общий, свободный и связанный (карбидный) углерод шихты, которые почти полностью совпадают с расчётными (табл. 11).

Таблица 11. Содержание общего, свободного и связанного (карбидного) углерода в шихте после механоактивации смеси Cr-C продолжительностью 33 мин.

	Содержание общего углерода, %	Содержание свободного углерода, %	Содержание связанного (карбидного) углерода %
Результаты анализа	13,50	9,50	4,00
Расчётные данные	13,30	9,30	4,00

Расчёты с использованием программы ThermoDyn 3.5 равновесного состава фаз в системе Cr-C из исходного соотношения в % Cr:C= 86,7:13,3 в интервале температур 300-1300К подтвердили образование на всём указанном интервале температур двух фаз Cr_3C_2 и Cr_7C_3 в соотношении в % Cr_3C_2 :Cr₇C₃=98,97:1,03. В реальности, происходит образование четырёх фаз – трёх карбидов хрома $Cr_{23}C_6$, Cr_7C_3 , Cr_3C_2 и оксида хрома Cr_2O_3 , причем их содержания меняются в зависимости от продолжительности механоактивации исходной смеси Cr-C, асимптотически приближаясь к некоторому пределу.

Из данных таблиц (5, 6) можно сделать вывод о том, что при синтезе высшего карбида хрома Cr_3C_2 с применением предварительной механоактивации шихты Cr-C реализуется CBC-процесс, идущий через образование $Cr_{23}C_6$ и Cr_7C_3 до высшего карбида. Отсутствие в РФА-данных $Cr_{23}C_6$ и Cr (ш:м=200:10, табл. 5) после 27 мин механоактивации, является дополнительным подтверждением ступенчатого характера образования высшего карбида хрома Cr_3C_2 .

Присутствие в данных РФА оксида хрома Cr₂O₃ (табл. 5-8) можно объяснить адсорбцией кислорода из воздушной среды в барабанахактиваторах на поверхность порошка хрома во время механоактивации и наличием адсорбированного кислорода на поверхности сажи. Адсорбированный кислород реагирует с хромом и образованием Cr₂O₃ в

процессе высокоскоростной термообработки, что подтверждается данными анализа на кислород исходного порошка хрома, шихты до и после механоактивации (табл. 12) и данными ДТА (табл. 13) при продолжительности помола 33 мин.

Таблица 12. Содержание кислорода в исходных порошках хрома и углерода (сажи) до механоактивации, в смеси Cr-C шихте после 33 мин механоактивации, и в смеси Cr-C после 33 мин механообработки и высокоскоростной термообработки до 1000°C

	содержание кислорода О ₂ (% по массе)
Хром исходный (до механоактивации)	0,20
Углерод (сажа) исходная (до механоактивации)	0,53
Смесь Cr-С после 33 мин механообработки	2,80
Смесь Cr-C после 33 мин механообработки и высокоскоростной термообработки до 1000°C	2,58

3.2. Особенности ДТА-анализа

В ДТА-экспериментах навески исследуемых смесей и эталонного порошка (Al₂O₃) имели массу около 1г. В предположении доминирующей роли излучения в теплообмене тиглей и печи, скорость нагрева тиглей \dot{T}_i приблизительно описывается уравнением:

$$c_i \cdot \overset{\bullet}{T_i} \cong \beta_1 \cdot \beta_2 \cdot S \cdot \delta \cdot (T_f^4 - T_i^4) + \overset{\bullet}{Q_i},$$

где *S* – площадь наружной поверхности тигля, $\delta = 5,7 \cdot 10^{-8}$ Вт/(м²·град⁴) – постоянная Стефана-Больцмана, β_1 и β_2 – степени черноты (близости к абсолютно черному телу) стенок тигля и печи, $T_f \approx 1300$ К – абсолютная температура печи, индексы *i*=1 и *i*=0 относятся, соответственно, к тиглям с рабочей смесью и эталоном, T_i –абсолютные температуры тиглей и их содержимого (в предположении бесконечно большой теплопроводности

тиглей и смеси), C_i – теплоёмкости тиглей вместе с их содержимым, \dot{Q}_1 – скорость выделения тепла реакции в навеске образца, $\dot{Q}_0 = 0$, т.к. в эталоне реакции не идут.

На рис. 2 схематично представлены кривые зависимостей $T_i(\tau)$, где τ – время, прошедшее с момента надвигания печи на тигли. Кривая 3 относится эталону, не претерпевающему фазовых превращений в интервале К температур $T_r \div T_f$, где T_r – комнатная температура. Кривая 2 относится к образцу, испытывающему эндотермическое превращение – плавление при температуре *T_m*. Кривая 1 относится к образцу, претерпевающему растянутое факторов (например, во времени, из-за кинетических диффузии), экзотермическое превращение, начинающееся при температуре, чуть выше *T_m*. В принципе, кривая 1 связана с реакциями карбидообразования в многослойном рулете из перемежающихся слоёв Cr и C.

Рис 2.

Если бы теплоёмкости навесок образцов были равны теплоёмкости эталонного образца, то кривые 1 и 2 сливались бы с кривой 3 до температур начала превращения, то есть в интервале $T_r \div T_m$.

Поскольку, тигли одинаковы, для совпадения теплоёмкостей образца и эталона, то есть выполнения условия $C_1 = C_0$, требуется, чтобы обе навески содержали одинаковое число атомов, или молей вещества.

В отличие от метода ДСК (дифференциальной сканирующей калориметрии) метод ДТА весьма ненадёжен при определении тепловых эффектов превращений. В данной работе тепловые эффекты рассчитывались как

$$Q = K \cdot S[T_1(\tau) - T_0(\tau)] \cdot d\tau,$$

где $T_1(\tau)$ и $T_0(\tau)$ – температуры образца и эталона, K – экспериментально определяемый коэффициент. Наилучшая ДТА точность метода обеспечивается в случае $C_1 = C_0$, то есть при равенстве суммарных теплоёмкостей тиглей с навесками образца и эталона, или равенстве теплоёмкостей самих навесок. Однако, как показывает компьютерный расчёт процесса разогрева тиглей, даже В ЭТОМ случае коэффициент К. определенный по эндотермической реакции плавления некоего реперного вещества (Sn, Pb, Al, Ge и др.) может вдвое отличаться от коэффициента, соответствующего экзотермической реакции с этой же самой теплотой и температурой превращения. Кроме того, из-за непостоянства скорости нагрева в конкретной рассматриваемой установке ДТА (в промышленных установках постоянство скорости нагрева поддерживается электроникой) коэффициент K на краях температурного интервала, т.е. при $T_m \rightarrow T_r$ и $T_m \rightarrow T_f$, также различается вдвое. Наконец, коэффициент К слабо зависит и от самой величины теплового эффекта. Названные причины позволяют говорить лишь о полукачественной оценке теплот превращений в эксперименте и о тенденции их изменений.

На рис. 3 приведена зависимость температуры начала превращения *t_i* от продолжительности активации

В случае ш:м=20:1 с ростом времени помола $\tau_{\rm MC}$ от 12 мин до 30 мин t_i падает с 630°С до 300°С. После 30 мин помола, как видно из табл. 5, карбиды начинают образовываться уже в барабане мельницы, то есть *in situ*. По всей видимости, эти карбиды, как продукты реакции, или шлаки пассивируют поверхность раздела исходных реагентов – Сг и С, так как углерод вынужден диффундировать к хрому через толщу этих карбидов. Площадь чистой межфазной поверхности Cr/C из-за «шлаков» также сокращается. В результате, как это видно из рис. 3, при $\tau_s>30$ минут t_i начинает расти. В случае ш:м=40, среднестатистическая частица порошка претерпевает вдвое больше пластических деформаций при ударах шаров по сравнению с загрузкой ш:м=20:1. Утонение пластинчатого рулета происходит быстрее и для достижения той же самой t_i требуется меньшее время помола. Однако, локальный разогрев контактных зон в случае ш:м=40:1 сильнее, так как энергия удара шаров достаётся меньшему количеству порошка. В результате, карбидо- или шлакообразование в барабане усиливается и t_i удается снизить лишь до ~ 370°C, а не до 300°C как раньше, причем минимуму t_i отвечают ~ 22 мин помола, а не 30.

В табл. 6 приведён фазовый состав смеси после обработок различной длительности в мельнице и последующего высокоскоростного нагрева в установке ДТА до 1000°С в течение ~3 мин. Весовое содержание P_i (при $i=1\div5.$) кристаллических компонентов смеси, то есть фаз Cr_3C_2 , Cr_7C_3 , $Cr_{23}C_6$, Cr_2O_3 и α -Cr определялось рентгенофазовым количественным анализом. Содержание же аморфной сажи рассчитывалось, исходя из предположения, что весовая пропорция Cr:C после помола и отжига такая же, как и в исходной смеси, то есть 86,7:13,3. Отсюда, весовое содержание сажи (за вычетом связанного в карбидах углерода)

$$P_{6} = \frac{133}{867} \cdot \sum_{i=1}^{5} P_{i} \cdot \sigma_{i} - \sum_{i=1}^{3} P_{i} \cdot (1 - \sigma_{i}),$$

где σ_i – весовые доли Cr в указанных выше кристаллических фазах, то есть 0,867, 0.910, 0.943, 0.684 и 1 соответственно.

В табл. 6 приведены перенормированные на 1 весовые доли фаз, то есть $P'_i = \frac{P_i}{S}$, где $S = \sum_{j=1}^{6} P_j$. Как видно из табл. 6, даже при помолах длительностью 27 мин и выше, с последующим быстрым нагревом до 1000°С, около 10% исходной сажи не вступает в реакцию с хромом. При шихте состава Cr₃C₂ это обстоятельство препятствует образованию 100% высшего карбида Cr₃C₂, даже несмотря на то, что ~5 % хрома окисляется. Дефицит углерода приводит к сохранению ~15% промежуточного карбида Сr₇C₃.

Вообще, при механосинтезе, ситуация, когда один из компонентов преимущественно намазывается на шары и стенку барабана, встречается весьма часто, если не сказать, всегда. Для получения молотого порошка требуемого химического состава экспериментаторам приходится закладывать в барабан искаженный состав шихты, – одни компоненты брать в избытке, другие в недостатке. Например, при помоле смеси Ni-Ti футеровочное покрытие шаров и стенки барабана обогащено Ті, а остающийся в свободной фракции порошок обогащен Ni. Компоненты различаются по адгезионным свойствам, что и приводит к преимущественному налипанию. В данном конкретном случае, в барабанах, вымытых после помола смеси Cr-C, в качестве теста производился помол чистого хрома. При этом, получали карбиды хрома. Вероятно, углерод при механосинтезе смеси Cr-C диффундирует не только в Cr, но и в поверхностные слои мелющих тел, производя их цементацию. При последующем помоле чистого Cr, углерод из этих слоев перетекает в Cr из-за большего сродства к нему, чем к Fe, или же просто из-за растрескивания хрупких, науглероженных поверхностных слоёв абразивного износа и смешивания шаров, то есть их усиленного образующегося порошка с Cr. Возможно, ~10 % исходной сажи теряется именно из-за проникновения её в мелющие тела. Правда, химический анализ порошка, молотого в течение 33 мин показал содержание углерода в нём 13,5 %, что даже несколько превышает исходные 13,3%. Погрешность анализа, однако, не оценена. Если весь исходный углерод остается в молотом порошке, довольно трудно объяснить неучастие ~10 % этого углерода в реакции с Cr при помолах продолжительностью более 27 МИН И последующем отжиге.

Альтернативным объяснением несоответствия конечной и начальной массовой пропорции Cr:C в смеси могло бы быть абразивное натирание Fe со

стальных шаров и стенки барабана. Если исходная пропорция нарушена на ~10 %, а весь углерод сохранился в смеси, достаточно было бы увеличение массы переходного металла (Cr+Fe) на ~10%, то есть при загрузке в барабан 8,67 г хрома, хватило бы натирания ~0,9 г железа за 43 мин помола. Конечно, в этом случае предполагается 10%-ное замещение хрома железом в карбидах Cr_3C_2 и Cr_7C_3 , то есть достаточное для этого простирание областей существования двойных карбидов (Cr, Fe)₃C₂ и (Cr, Fe)₇C₃ на тройной диаграмме состояния Cr-Fe-C, по крайней мере, при конечной температуре отжига 1000°C. К сожалению, не был проведён количественный химический анализ молотых смесей на предмет оценки загрязнения их железом. Грубый химический анализ был сделан позже.

Следует, однако, заметить, что при значительном абразивном износе мелющих тел, содержание Fe должно было бы монотонно расти со временем помола. В этом случае, после обработок в мельнице в течение 27-43 мин и последующего быстрого отжига (табл. 6), когда в смеси уже не остаётся исходного α -Cr, должно было бы наблюдаться монотонное сокращение доли карбида Cr₃C₂ со временем помола и увеличение доли Cr₇C₃. Однако, этого не происходит, а колебания содержания Cr₇C₃, очевидно, связаны с переходом части Cr в оксид, то есть с вариациями содержания Cr₂O₃ в смеси после отжига.

Из табл. 6 видно, что длительность отжига в установке ДТА Cr–C недостаточна для приведения молотой смеси в состояние термодинамического равновесия, крайней ПО мере, при помолах продолжительностью до 24 мин, когда в смеси после отжига сохраняется α-Cr, тогда как состав смеси, с учётом убыли С – промежуточный между Cr_3C_2 и Cr₇C₃.

Образованию высшего карбида хрома (Cr₃C₂) стехиометрического состава препятствует кинетический фактор – превышение частицами Cr или

прослойками Сг длины диффузионного пути углерода в хроме при механосинтезе и отжиге. С увеличением времени активации от 0 до 30 мин, доля исходного реагента (Cr), успевающего при последующем быстром отжиге вступить в реакцию с углеродом (или кислородом) увеличивается с 30% до 100%. В соответствии с этим, растёт представленный на рис. 4 тепловой эффект реакции при отжиге (кривая 1, ш:м = 20).

Заметим, что, несмотря на малую массовую долю оксида Cr_2O_3 , не превышающую 7 %, вклад его в тепловыделение весьма значителен, так как энтальпия образования грамм-атома окисла Cr_2O_3 в 12,5 раз превосходит таковую для карбидов Cr_3C_2 и Cr_7C_3 .

Рис. 4

В табл. 13 приведены парциальные вклады продуктов реакции в тепло реакции, показывающие, что оксид в этом отношении может вдвое превосходить карбиды. При продолжительности механосинтеза свыше 30 мин, тепловыделение при отжиге начинает снижаться, так как образование карбидов, или шлаков, происходит уже внутри барабана и усиливается с ростом времени помола (табл. 5), то есть, смесь частично «выгорает» уже в барабане и её энергетический заряд снижается.

Таблица 13. Расчётные и фактические тепловые эффекты экзотермических реакций в системе Cr-C при T= 1300 К Ш:М =200:10

Продолжи- тельность	Расчётное тепловыделение при образования карбидов и оксида хрома				Фактическое тепловыделе- ние	ΔQ	
активации	Cr ₂₃ C ₆	Cr ₇ C ₃	Cr ₃ C ₂	Cr ₂ O ₃	Сумма Σ	Эксперимент- альные данные	Q _{факт} -Q _{теор}
МИН				КДж / г	шихты		·
0	0,014	0,045	0,032	0,000	0,091	0,299	0,208
9	0,028	0,059	0,049	0,170	0,306	0,355	0,049
12	0,017	0,155	0,048	0,341	0,561	0,406	-0,155
15	0,018	0,157	0,093	0,334	0,602	1,037	0,435
18	0,012	0,170	0,076	0,511	0,769	0,777	0,008
21	0,006	0,100	0,205	0,511	0,822	1,080	0,258
24	0,009	0,108	0,191	0,400	0,708	1,237	0,529
27	0,000	0,047	0,313	0,437	0,797	1,495	0,698
30	0,000	0,049	0,306	0,511	0,866	1,813	0,947
33	0,000	0,072	0,149	0,430	0,651	1,443	0,792
43	0,000	0,059	0,120	0,237	0,416	0,970	0,554

По данным [53] теплоты образования при 25°С для карбидов $Cr_3C_{2,}$ Cr_7C_3 и оксида Cr_2O_3 составляют, соответственно, 89,9; 177,9 и 1130,4 кДж/гм, где г-м – грамм-молекула. В пересчёте на 1 г хрома они равны 0,58; 0,49; и 10,87 кДж/г, соответственно. Таким образом, окисление 1 г хрома даёт приблизительно в 20 раз больший энергетический эффект, чем карбидообразование.

В карбиде Cr_3C_2 весовая доля Cr равна 0,867, так что теплота карбидообразования на 1 г шихты того же состава равна 0,50 кДж/г. Как видно из табл. 6, максимальное содержание Cr_2O_3 доходит до 6,9 % по массе
после быстрого отжига. Поскольку, весовая доля Cr в Cr_2O_3 равна 0,684, то максимальное тепловыделение при окислении составит ~0,45 кДж/г (имеется в виду 1 г исходной шихты Cr–C). Таким образом, совместный тепловой эффект реакций карбидообразования и окисления не может превышать 0,95 кДж/г (нормировка на грамм шихты Cr–C).

Зависимость - ΔH_f от температуры не сильно исказит этот результат. Экспериментальные тепловые эффекты, представленные в табл.13, могут приблизительно вдвое отличаться от расчетных, доходя до 1,8 кДж/г. Это связано с упоминавшимися ранее особенностями установки ДТА, то есть неопределенностью коэффициента К.

Запасаемая в дефектах кристаллической структуры энергия может составлять лишь несколько сотых кДж/г и не обеспечит разницу эксперимента и расчёта (см. например, энергию открытой поверхности в табл.26 с учётом того, что моль, или грамм-атом шихты Cr₃C₂, равен 1/5 грамм-молекулы и весит 36 г).

С целью определения количества энергии, запасаемой при помоле в дефектах кристаллической структуры, был проведен контрольный эксперимент.

Навеска чистого хрома, молотого в течение 43 мин при ш : м = 20 : 1, была подвергнута нагреву в DSK – установке «SETARAM» до 800°С со скоростью 20 град/мин. Было зафиксировано два экзотермических тепловых эффекта с энергиями ~0,02 кДж/г у каждого в интервалах температур 500÷650°С и 650 ÷ 800°С соответственно (рис. 5).

37

Рис. 5

После помола навеска содержала 2/3 Сг и 1/3 Сг₇С₃, причём эти пропорции сохранились и при повторном помоле чистого Сг в тех же барабанах в течение 43 мин.

Рентгенофазовый анализ молотого порошка и нагретого при DSC до 650°С (окончание низкотемпературного превращения, то есть 1-ого пика на DSC – кривой) и 800°С (окончание высокотемпературного превращения) дал следующие результаты (табл. 14).

Фаза,	Молотый	После нагрева до	После нагрева до
вес %	порошок	650°C	800°C
Cr	65	50	28
Cr ₂₃ C ₆	-	3	65
Cr ₇ C ₃	35	39	-
Cr ₂ O ₃	-	8	7

Таблица 14. Изменение фазового состава смеси Cr-C при нагреве

Обращает на себя внимание, что ~8% оксида Cr₂O₃ образовалось в барабане, иначе при DSC-нагреве до 650°С наблюдался бы гигантский экзотермический эффект ~0,5 кДж/г, то есть приблизительно в 25 раз больший экспериментально определяемого. Если ЭТО так, можно предположить, что окисление Cr, с образованием Cr₂O₃, и в случае помола смеси Cr-C происходит непосредственно в барабане, а не при последующем отжиге. Это почти вдвое увеличивает рассогласование между расчётными тепловыми эффектами и определяемыми в ДТА – установке. Вероятно, в аморфные барабане мельницы образуются или высокодисперсные кристаллические оксиды Cr_2O_3 , которые при содержании в шихты до ~8 % не видны на дифрактограммах, так как дают широкие и низкие линии, тонущие в фоне.

3.3. Структурные превращения при механоактивации

По данным РФА (рис. 6*a*) в шихте при продолжительности активации до 30 мин включительно присутствует в основном хром, углерод рентгеноаморфен, и его фаза отсутствует.

39

При продолжительности механоактивации свыше 30 мин происходят структурные изменения хрома. На первую, самую сильную линию (110) α -Cr накладывались линии от зарождающихся карбидов хрома (Cr₂₃C₆, Cr₇C₃, Cr₃C₂). Для анализа тонкой кристаллической структуры хрома выбрана относительно чистая пара линий (002) (рис. 66) и (103) с углами дифракции 2θ на CuK_{α} – излучении, равными соответственно 64,6° и 115,3°. Таким образом, линия (103) была использована в качестве линии "второго" порядка отражения по отношению к линии (002).

Профили линий аппроксимировались псевдофойгтианами, т.е. линейными комбинациями функций Коши и Гаусса с одинаковой шириной на половину высоты, а именно

$$\varphi(x) = \frac{w_1}{1+t} + w_2 \exp(-a\ln 2), \qquad (1)$$

где $a = \left(\frac{x}{z}\right)^2$, $z = 2\theta - 2\theta_0$, 2θ - угол дифракции, $2\theta_0$ - центр тяжести линии, z - параметр ширины, w_1 и w_2 - веса компонентов Коши и Гаусса, $w_1 + w_2 = 1$.

Полная ширина псевдофойгтиана на половину высоты $B_{\frac{1}{2}} = 2z$, тогда как его интегральная ширина, $B = \left(w_1 \pi + w_2 \sqrt{\frac{\pi}{\ln 2}}\right) z$, а их отношение

$$e = \frac{B_{1/2}}{B} = \frac{2}{w_1 \pi + w_2 \sqrt{\frac{\pi}{\ln 2}}} . \quad (2)$$

Затем, по уравнениям Лангфорда [54]

$$\frac{B_{\mathcal{H}}}{B} = 2,0207 - 0,4803\theta - 1,7756\theta^2, (3)$$
$$\frac{B_{\partial}}{B} = 0,6420 + 1,4187\sqrt{\theta - \frac{2}{\pi}} - 2,2043\theta + 1,8706\theta^2$$

определялись параметры истинного фойгтиана, наилучшим образом соответствующего псевдофойгтиану – аппроксиманте, т.е. интегральные ширины Коши B_K и Гаусса B_{Γ} , отвечающие двум компонентам свёртки.

Аналогичная процедура расчёта применялась для пары линий эталона геометрического уширения Ge, близко расположенных к линиям (200) и (103) α -Cr, то есть определялись их ширины b_K и b_{Γ} .

Компоненты физической ширины профиля определялись по формулам

$$\beta_{\kappa} = B_K - b_K; \quad \beta_{\Gamma} = \sqrt{B_{\Gamma}^2 - b_{\Gamma}^2} \qquad (4)$$

Полная интегральная физическая ширина вычислялась затем по формуле Е.Ф.Смыслова[55]

$$\beta = \frac{2}{3}\beta_{\kappa} + \sqrt{\left(\frac{\beta_{\kappa}}{3}\right)^2 + \beta_{\Gamma}^2} , \quad (5)$$

которая с относительной погрешностью не хуже 0,7 % аппроксимирует истинную зависимость

$$\beta = \frac{\beta_{\partial}}{\exp(h^2) \cdot erfc(h)}, \quad \text{где } h = \frac{\beta_{\mathcal{H}}}{\sqrt{\pi}\beta_{\partial}}.$$
 (6)

В результате получены физические ширины линий, приведённые в табл. 15, где указаны отношения физических измерений линий "второго" и "первого" порядка по дифракционному вектору $q = \frac{4\pi}{\lambda} \sin \theta$, где λ - длина

волны, т.е.
$$\beta' = \frac{\pi^2}{90\lambda} \cos \theta_0 \beta$$
.

Таблица 15. Физические интегральные ширины линий (002) и (103) α-Сг в шихте после механоактивации и отношение физических уширений линий (103) и (002) по дифракционному вектору

Продолжительность	Индексы	Физическая	
активации, мин	линий α -cr	интегральная ширина	eta_2'/eta_1'
		(<i>2θ</i>), град	
21	(002)	0,3188±0,0117	$1,81\pm0,08$
	(103)	0,9132±0,0227	
30	(002)	0,5091±0,0189	$1,68\pm0,08$
	(103)	1,3514±0,0449	
33	(002)	0,9197±0,0295	$1,56\pm0,08$
	(103)	2,2659±0,0783	
43	(002)	1,3510±0,0533	1,43±0,09
	(103)	3,0618±0,1545	

Следует заметить, что при традиционной интерпретации уширений отношение β'_2/β'_1 должно лежать в интервале от 1 до $\frac{d_1}{d_2} = 1,581$, где d_1 и d_2 - межплоскостные расстояния для линий "первого" и "второго" порядков отражения.

Из табл. 15 видно, что измеренные значения β_2'/β_1' выходят из интервала. Поэтому физически допустимого для интерпретации экспериментальных данных применена более изощрённая методика анализа, блочный профиль предполагающая, что ПО крутизне занимает промежуточное положение между функцией Коши и гауссианом и может аппроксимироваться их свёрткой, а также, что помимо однородной среднеквадратичной микродеформации ε имеет место хаотическая деформация отдельного межплоскостного расстояния \mathcal{E}_1 .

При *ε* = 0 расстояние между "первой" и "*k*"-той атомными плоскостями

$$Y_k = \sum_{i=1}^k X_i , \quad (7)$$

где X_i - независимо распределённые случайные величины с математическим ожиданием *d* и дисперсией σ^2 .

Отсюда, математическое ожидание и дисперсия случайной величины *Y_k* равны соответственно

$$EY_k = k d \qquad (8)$$
$$DY_k = k \sigma^2.$$

По определению $\varepsilon_1 = \sigma/d$.

Если на хаотическую деформацию наложена не зависящая от неё однородная деформация, то

$$DY_{k} = (kd)^{2} \varepsilon^{2} + k\sigma^{2} = (kd)^{2} \varepsilon^{2}(k).$$
 (9)

Отсюда, $\varepsilon(k) = \varepsilon^2 + \frac{\varepsilon_1^2}{k}$.

В модели цилиндрического блока каждая атомная плоскость, перпендикулярная дифракционному вектору содержит *M* атомов. Если блок состоит из *N* плоскостей, то амплитуда рассеяния блока в электронных единицах равна

$$F(q) = Mf \sum_{n=1}^{N} e^{iqx_n} , \quad (10)$$

где f - амплитуда рассеяния атомом Cr, x_n - высота n-ой атомной плоскости по оси параллельной дифракционному вектору.

Отсюда, интенсивность рассеивания блоком

$$I(q) = \left| F(q) \right|^2 = \left| Mf \right|^2 \left\langle \sum_{n,m=1}^N e^{iq(x_n - x_m)} \right\rangle.$$
(11)

С учётом сделанных выше предположений, случайная величина $X_{nm} = X_n - X_m$ имеет нормальное распределение с математическим ожиданием

$$\mathbf{E}X_{nm} = (n-m)d \tag{12}$$

$$DX_{nm} = (n-m)^2 d^2 \varepsilon^2 + |n-m| d^2 \varepsilon_1^2.$$

Отсюда,

$$\left\langle e^{iq \cdot x_{nm}} \right\rangle = e^{iqd(n-m)} \cdot e^{-(n-m)^2 \frac{q^2 \cdot d^2}{2} \varepsilon^2} \cdot e^{-|n-m| \frac{q^2 \cdot d^2}{2} \varepsilon_1^2}.$$
(13)

Если речь идёт о двух истинных порядках отражения, то *d* в вышеприведённой формуле равно межплоскостному расстоянию для "первого" порядка отражения, тогда как значения дифракционного вектора в центре тяжести линии равно $q_o = \frac{2\pi}{d}l$, где *l*-порядок отражения.

Поскольку, в пределах линии $q = q_0 + \Delta q$, где $\Delta q << q_0$, то $a^2 d^2$

$$\frac{q}{2} \approx 2\pi^2 l^2. \qquad (14)$$

Кроме того, поскольку $q_0 d$ кратно 2π , то

$$e^{iqd(n-m)} = e^{i\Delta q d(n-m)}$$
. (15)

Вводя безразмерную координату $y = (q - q_o)d$ и обозначив n - m = k, получим выражение для интенсивности рассеяния

$$I(y) = |Mf|^2 \sum_{k=-(N-1)}^{N-1} (N-|k|) \cdot e^{-2\pi^2 l^2 \varepsilon^2 k^2} \cdot e^{-2\pi^2 l^2 \varepsilon_1^2 |k|} \cdot e^{iky} .$$
(16)

Здесь множитель N - |k| равен числу плоскостей, разделенных зазором kd.

Таким образом, получили разложение для интенсивности в виде ряда Фурье с блочным коэффициентом Фурье $C_k^{\delta n} = N - k$ при $0 \le k < N$ ($C_k^{\delta n} = 0$ при $k \ge N$) и деформационным коэффициентом Фурье

$$C_{k}^{\partial e\phi} = e^{-2\pi^{2}l^{2}\varepsilon^{2}k^{2}} \cdot e^{-2\pi^{2}l^{2}\varepsilon_{1}^{2}k}.$$
 (17)

Поскольку полный физический профиль является свёрткой блочного и деформационного профилей, их коэффициенты Фурье перемножаются.

Заметим, что если профиль является гауссианом, т.е.

$$\varphi_{\Gamma}(x) = \exp\left[-\left(\frac{x}{z}\right)^2\right]$$
 (18),

то его нормированные на С_окоэффициенты Фурье равны

$$C_k = \exp\left[-\left(\frac{k\,z}{2}\right)^2\right]. (19)$$

С другой стороны, для профиля Коши $\varphi_K(x) = \frac{1}{1 + \left(\frac{x}{z}\right)^2}$,

нормированные на С_окоэффициенты Фурье равны

$$C_k = \exp\left[-|k|z\right]. \qquad (20)$$

Из выражения $C_k^{\partial e\phi}$ можно заключить, что деформационный профиль является сверткой гауссиана с параметром ширины $z_{\Gamma}^{\partial e\phi} = 2\sqrt{2} \pi l \varepsilon$ и функции Коши с параметром ширины $z_{K}^{\partial e\phi} = 2\pi^2 l^2 \varepsilon_1^2$.

Таким образом, z_r растёт пропорционально q, или как $tg\theta$ по углу 2θ , тогда как z_{κ} растет пропорционально q^2 , или как $tg\theta \cdot \sin\theta$ по углу 2θ . Другими словами, хаотическая деформация приводит к более быстрому росту уширения линий, чем однородная деформация и профиль, ей соответствующий, является функцией Коши, а не гауссианом.

Для блока произвольной формы нормированный на C_0 коэффициент Фурье C_k равен объёму в перекрытии исходного блока и такого же блока, смещённого параллельным переносом на *kd* вдоль дифракционного вектора, отнесённого к объёму исходного блока.

При наличии распределения цилиндрических блоков или колонок в блоках произвольной формы по размеру N, блочный коэффициент Фурье равен при $k \ge 0$

$$C_k = \int_{k}^{+\infty} (N-k) p(N) dN$$
, (21)

где функция распределения имеет нормировку $\int_{0}^{+\infty} p(N) \, dN = 1$. Отсюда

$$C_0 = \int_0^{+\infty} N p(N) dN = \overline{N}.$$
 (22)

Для нормированных на С_о блочных коэффициентов Фурье имеем

$$C'_{k} = -\frac{1}{\overline{N}} \int_{k}^{+\infty} p(N) dN , \quad C'_{0} = -\frac{1}{\overline{N}} , \quad C''_{k} = \frac{1}{\overline{N}} p(k) , \quad (23)$$

где штрих означает дифференцирование по *k*.

Последнее выражение является уравнением Уоррена – Авербаха.

Поскольку распределение колонок по длине p(k) является не отрицательной функцией, это означает, что должно выполняться условие $C_k^{\prime\prime} \ge 0$. Кроме того, распределение p(k) обычно является кривой с максимумом. Блочный профиль в виде функции Коши, как было отмечено выше, имеет фурье-коэффициенты $C_k = e^{-kz}$, так что $C_k^{\prime\prime} = z^2 e^{-kz}$, т. е. $C_k^{\prime\prime}$ монотонно убывает с ростом k.

Более правдоподобная формула блочного профиля получается в предположении, что этот профиль является свёрткой функции Коши и гауссиана с параметрами ширины, не зависящими от дифракционного вектора, или меняющимся как $\frac{1}{\cos\theta}$ по углу 2θ . В этом случае $C_k^{"}$ будет иметь вид кривой с максимумом, хотя и не лишенной влияния "hook-effecta", т.е. $C_k^{"}$ не будут стремиться к нулю при $k \rightarrow 0$.

Представление блочного профиля в виде свёртки функций Коши и Гаусса является грубым приближением, но более близким к действительности, чем чистая функция Коши.

Пусть $B_{1K}, B_{2K}, B_{1\Gamma}, B_{2\Gamma}$ являются угловыми (в градусах 2θ) интегральными ширинами Коши и Гаусса физических профилей "первого" и "второго" порядков отражения соответственно.

На основании вышеизложенного, приходим к системе уравнений

$$\begin{cases} z_{K} + 2\pi^{2} \varepsilon_{1}^{2} = \frac{B_{1K} \alpha_{1}}{\pi} \\ z_{K} + 2\pi^{2} l^{2} \varepsilon_{1}^{2} = \frac{B_{2K} \alpha_{2}}{\pi} \end{cases} \begin{cases} z_{\Gamma}^{2} + 8\pi^{2} \varepsilon^{2} = \frac{(B_{1\Gamma} \alpha_{1})^{2}}{\pi} \\ z_{\Gamma}^{2} + 8\pi l^{2} \varepsilon^{2} = \frac{(B_{2\Gamma} \alpha_{2})^{2}}{\pi} \end{cases}, \quad (24)$$

где коэффициенты $\alpha_1 = \frac{\pi^2}{180} ctg\theta_{01}$, $\alpha_2 = \frac{\pi^2}{180} lctg\theta_{02}$ обеспечивают перевод угловых уширений линий в уширение по координате *у*, $2\theta_{01}$, $2\theta_{02}$ – центры тяжести линий "первого" и "второго" (точнее, *l*-ого) порядков отражения, $l = \frac{d_1}{d_2}$ - отношение межплоскостных расстояний для линий "первого" и "второго" порядков.

Коэффициенты Фурье блочного профиля $C_k = e^{-kz_K - \left(\frac{kz_F}{2}\right)^2}$. Отсюда, $C'_k = -z_K$ и средняя длина колонки $\overline{N} = \frac{1}{z_K}$, тогда как средний линейный размер колонки (иначе называемый средним размером блока, если усреднение производится по площади, перпендикулярной дифракционному вектору) $\langle D \rangle_{area} = \frac{d}{z_K}$. Для блоков сферической формы средневзвешенный (с

весом равным объёму блока) диаметр блока $\langle D \rangle_{vol} = \frac{8}{3} \frac{\pi}{\beta'_{\delta n}}$, где $\beta'_{\delta n}$ -интегральная ширина блочного профиля по дифракционному вектору. Применяя для $\beta'_{\delta n}$ аппроксимационное выражение Е.Ф.Смыслова (25), получим

$$\langle D \rangle_{vol} = \frac{\frac{8}{3}\pi d}{\frac{2}{3}\pi z_{\kappa} + \sqrt{\left(\frac{\pi z_{\kappa}}{3}\right)^{2} + \left(\sqrt{\pi} z_{\Gamma}\right)^{2}}} = \frac{8d}{2z_{\kappa} + \sqrt{z_{\kappa}^{2} + \frac{9}{\pi} \cdot z_{\Gamma}^{2}}}.$$
 (25)

Результаты расчёта приведены в табл. 16.

Таблица 16. Параметры тонкой кристаллической структуры *α*-Cr в зависимости от продолжительности механоактивации

Продолжительность активации, мин	$\left< D \right>_{vol}, \mathop{ m \AA}^{\circ}$	E, %	$\left< D \right>_{area}, \mathop{ m A}\limits^{\circ}$	$\mathcal{E}_l, \%$
21	1043	0,021	537	1,580
30	574	0,048	215	1,783
33	242	0,102	91	2,136
43	158	0,141	66	2,406

Из приведённых данных видно, что обе деформации є и є₁ растут с увеличением продолжительности активации, тогда как средний размер

области когерентного рассеяния падает, свидетельствуя о нарастающем разупорядочении структуры *α*-Cr.

Таким образом, с увеличением продолжительности механообработки смеси хром-углерод дефектность кристаллической решетки *α*-Сг нарастает. При этом полное физическое уширение дифракционных линий растёт с углом 2θ быстрее чем $tg\theta$, что исключает возможность традиционного анализа тонкой кристаллической структуры. В связи с этим применена усовершенствованная методика анализа, позволяющая определять два блочных $\langle D \rangle_{vol}$, $\langle D \rangle_{area}$ и два деформационных параметра ε , ε_l . Если однородная микродеформация ε даёт вклад в уширение пропорциональный $tg\theta$, то хаотическая микродеформация \mathcal{E}_{l} приводит К росту уширения пропорциональному $tg\theta \cdot \sin\theta$. В исследуемом случае деформация \mathcal{E}_{l} доминирует.

Как известно (по мартенситу в сталях), углерод в ОЦК – решётке занимает октаэдрические поры. При этом радиус поры, т.е. расстояние от центра поры до "поверхности" атомов четырех ближайших соседей составляет r_1 =0,478d, тогда как до "поверхности" двух других атомов r_2 = 0,155d, где d-диаметр атома матрицы (т.е. Fe с мартенситной структурой).

Радиус поры *r*₂ слишком тесен для углерода, что приводит к растяжению ОЦК-решетки в этом направлении с усадкой в поперечном, т.е. к тетрагональному искажению кубической решетки, описываемому в случае железного мартенсита хорошо известными формулами Курдюмова [56]

$$\frac{a = a_o - 0.015 p}{c = a_o + 0.018 p} , \quad (26)$$

где *a_o* -период решетки α-Fe, *a_o*, *a* и *c* измеряются в ангстремах, *p* - весовой процент углерода в мартенсите.

На рис. 7 показаны расчётные спектры мартенсита с содержанием углерода от 2,0 до 8,5% (ат.) при параметрах уширения линий: диаметр блока D=100Å, среднеквадратичная микродеформация $\varepsilon=1\%$. Эти параметры

48

уширения приблизительно соответствуют экспериментально наблюдаемым при механоактивации смеси Cr-C (табл.16). Периоды *a*_o ОЦК-решёток железа и хрома близки и составляют соответственно 2,867 и 2,885 Å. Это позволяет надеяться, что и в случае растворения углерода в решётке хрома формулы Курдюмова должны быть приблизительно верны.

Рис. 7

Рентгеновские дифракционные спектры смеси Fe– C Содержание углерода, % ат.: 1 - 2,0; 2 - 3,5; 3 - 5,5; 4 - 7,0; 5 - 8,5

Как видно из рис. 7, уже при содержании углерода 3,5% (ат.) происходит заметное расщепление линий α -Fe. Такое расщепление не наблюдается на наших экспериментальных спектрах (рис. 6а, 6б). Можно предположить, что содержание углерода в решетке хрома не превышает 3% (ат.).

Поскольку, растворимость углерода в хроме мала даже при механической обработке их смеси, карбидообразование может происходить только на границе раздела фаз Cr-C, вероятно, за счёт диффузии более подвижных атомов углерода сначала непосредственно в хром, а затем в хром, через слой образовавшегося карбида.

Как хорошо известно [57], при механоактивации образуется дисперсный "рулет" из чередующихся слоёв компонентов смеси. При этом имеется предел механического измельчения, т.е. утонения слоя "рулета". Обычно, предельная толщина слоя составляет 100-1000Å. Оценка длины диффузионного пути углерода может быть проведена по формуле

 $x = \sqrt{2Dt}$, (27) где $D = D_o \exp(-Q/RT)$ – коэффициент диффузии, t – время механического воздействия (когда происходит значительный разогрев, ускоряющий диффузию), Q – энергия активации диффузии, R – универсальная газовая постоянная, D_o – предэкспоненциальный фактор.

За неимением данных по диффузии углерода в карбидах хрома, оценка производилась только для диффузии углерода в хроме ($D_o=8,7\cdot10^{-3}$ см²/с, Q=110 кДж/моль [53,58]. Для времени обработки 2000 с длина диффузионного пути *х* в зависимости от температуры представлена в табл. 17.

Таблица 17. Длина диффузионного пути углерода в хроме

Температура, К	300	350	400	450	500	550
Длина диффузионного пути, Å	0*	0	39	243	1059	3525

^{*} Нули проставлены в тех случаях, когда длина диффузионного пути меньше межатомного расстояния.

Как видно из табл. 17, при толщине слоёв "рулета" ≈1000 Å, разогрев смеси Cr-C до 200-250°C достаточен для завершения диффузионного превращения. Именно такой разогрев был получен при компьютерном моделировании наших условий обработки (геометрических параметров планетарной мельницы, частоты вращения водила, числа шаров в барабане и их размера) с помощью программы PLANETAR [59].

Даже, если конечная толщина "рулета" в нашем случае превышает 1000Å, следует иметь в виду, что диффузия в условиях механической обработки может быть значительно ускорена, поскольку в результате значительной пластической деформации образуется развитая система дислокационных трубок и границ зёрен. На основе данных табл.16 была сделана грубая оценка плотности хаотических дислокаций в α-Cr. Среднее число атомных плоскостей в колонке:

$$N = \frac{\langle D \rangle_{area}}{d_1}, \qquad (28)$$

где межплоскостное расстояние d_1 =1,4425Å.

Производили усреднение квадрата полной упругой деформации $\varepsilon^2(k) = \varepsilon^2 + \frac{\varepsilon_1^2}{k}$ по блоку. Число межплоскостных зазоров *k* равно *N-k*. Поэтому

$$\langle \varepsilon^2(k) \rangle = \varepsilon^2 + \varepsilon_1^2 S,$$
 (29)
где $S = \frac{2}{N(N-1)} \sum_{k=1}^{N-1} \frac{N-k}{k}.$

Результаты представлены в табл. 18. При этом предполагалось, что макроскопически недопустимая упругая деформация величиной в 2-3% (которая, будучи умноженной на модуль Юнга, превышает предел текучести) может существовать на микроуровне, то есть в пределах нескольких межплоскостных расстояний, и энергия таких значительных статических смещений атомов может быть оценена в рамках теории упругости.

Таблица 18. Зависимость среднеквадратичной деформации и плотности хаотических дислокаций в α-Cr от продолжительности механоактивации

Продолжительность	21	30	33	43
активации, мин				
$\sqrt{ig\langle arepsilon^2(k) ig angle}$, %	0,273	0,446	0,748	0,948
$ ho_{ m d}$, 10^{11} см ⁻²	0,5	1,3	3,6	5,8

Плотность хаотических дислокаций $\rho_{\mathcal{I}}$ грубо определялась на основе уравнения

$$\alpha G b^2 \rho_{\mathcal{A}} = \frac{3}{2} E \left\langle \varepsilon^2(k) \right\rangle, \quad (30)$$

где *G* и *E*- модули сдвига и Юнга, *b* – вектор Бюргерса, α – коэффициент порядка 1. Величина $\alpha G b^2$ представляет упругую энергию на единицу длины дислокации, и, будучи умноженной на ρ_A , дает энергию в единице объема, которая, с другой стороны, может быть грубо оценена как $\frac{3}{2} E \langle \varepsilon^2 \rangle$. Поскольку

$$G = \frac{E}{2(1+\upsilon)}, (31)$$

где υ – коэффициент Пуассона, то, полагая $\alpha = 1$ и $\upsilon = 0,33$, приходим к выражению

$$\rho_{\mathcal{A}} = \left(\frac{2}{b}\right)^2 \left\langle \varepsilon^2(k) \right\rangle. \quad (32)$$

В предположении равенства вектора Бюргерса кратчайшему межатомному расстоянию в α -Cr, т.е. при *b*=2,5Å, получаем значения $\rho_{\mathcal{I}}$, представленные в табл. 18.

В нашем случае плотность дислокации $\rho_{\mathcal{I}}$ в конце обработки составляет порядка 10^{12} см⁻².

Эффективный коэффициент диффузии в этом случае

$$D = (1 - x_{\mathcal{A}} - x_{\Gamma}) D_o e^{-Q'_{RT}} + x_{\mathcal{A}} D'_o e^{-Q'_{RT}} + x_{\Gamma} D'_o e^{-Q''_{RT}}, \qquad (33)$$

где $x_{\mathcal{A}} \approx \frac{\pi}{4} d^2 \rho_{\mathcal{A}}$ объёмная доля дислокационных трубок, d – диаметр дислокационной трубки, $x_{\mathcal{F}} \approx 3\Delta/L$ – объёмная доля границ зёрен, L – размер зерна, Δ – толщина большеугловой межзёренной границы, $D_o, Q, D'_o, Q', D''_o, Q''$ – предэкспоненциальные факторы и энергии активации для внутризёренной диффузии, диффузии по дислокационным трубкам и границам зёрен соответственно.

При $\rho_{\mathcal{A}}=10^{12}$ см⁻², $d\approx 4$ Å, имеем $x_{\mathcal{A}}\approx 0,001$.

Если принять, что $Q' \approx Q/2$ [60], а $D'_o \approx D_o$, можно ожидать, что вклад диффузии по дислокационным трубкам будет соизмерим с вкладом внутризёренной диффузии или даже превосходить последний. Вклад, аналогичный дислокационным трубкам, дают и большеугловые межзёренные границы, для которых $Q'' \approx Q'$ [61].

В условиях тяжелой пластической деформации зерно измельчается, а объёмная доля большеугловых границ возрастает. Если принять, что измеряемая рентгеновски длина когерентности (поперечник объёма когерентного рассеяния, размер субзерна) совпадает с размером зерна, то в нашем случае при $L\approx 100$ Å, $\Delta\approx 4$ Å, имеем $x_{Д}\approx0,1$. Таким образом, при $Q'' \approx Q/2$ [61,62] вклад диффузии по границам зёрен может быть доминирующим.

При меняющейся со временем температуре диффузионный путь углерода в хроме (*t*-время):

$$L(t) = \sqrt{2\int_{0}^{t} D(t')dt'},$$

где *D*(*t*) - зависящий от времени и температуры коэффициент диффузии.

Суммарный диффузионный путь (помол +ДТА) $L = \sqrt{L_1^2 + L_2^2}$, где L_1 путь при помоле, L_2 - путь при ДТА.

Схематично процесс карбидообразования можно изобразить как рост на границах раздела Cr/C диффузионных слоёв из карбидов

На границе раздела фаз C/Cr происходит реакционная диффузия углерода в хром. При этом, как показано на схеме, между Cr и C образуются прослойки карбидов $Cr_{1-x}C_x$, с уменьшающимся по мере движения от C к Cr содержанием (атомной доли) *x* углерода в карбиде. При диффузии в равновесных условиях, в процессе будут участвовать все карбиды хрома, представленные на равновесной диаграмме состояния Cr–C.

Как показано в работе [63], толщины прослоек карбидов в сандвиче l_i растут со временем помола (*t*) по диффузионному закону

$$l_{i} = \sqrt{2A_{i} \cdot t} ,$$

где $A_i \approx D_i \cdot \Delta x_i$, D_i — коэффициент диффузии С в *i*-ом карбиде, Δx_i — ширина концентрационной области существования *i*-ого карбида.

Наиболее толстыми оказываются прослойки тех карбидов, которые сильнее всего могут откланяться от стехиометрии, и в которых углерод наиболее подвижен. Соответственно, объёмная доля таких карбидов будет максимальна. С исчерпанием исходных реагентов (Сг и С) этот механизм роста нарушится и начнётся перераспределение углерода между карбидами.

В конечном счёте образуется один карбид, отвечающий составу шихты. В барабане при помоле продолжительностью до 43 мин реализуется этот случай. При реакционной диффузии в условиях мельницы быстрее всего растет прослойка карбида Cr₇C₃, хотя шихта отвечает составу Cr₃C₂.

В реальных условиях помола слои Cr в пластинчатом рулете имеют различную толщину, так что и исчерпание таких слоёв, то есть поглощение их наползающими с двух сторон карбидами происходит не одномоментно. Поэтому картина доминирования одного из карбидов на этой стадии роста, например Cr_7C_3 несколько смазывается.

Для смеси Сг–С, где величины твёрдости компонентов различаются на 2 порядка, не соответствует сделанному допущению. Однако, ввиду рулетообразной морфологии агрегированных частиц можно предположить, что экспоненциальный закон справедлив и в данном случае.

В работах [62,64-69] показано, что утонение пластин рулета происходит по экспоненциальному закону $e^{-t/\tau}$, с характеристическим временем τ . Соответственно, межфазная поверхность растёт по закону

$$S(t) = S_0 \cdot e^{t/\tau}$$

где *t* – время помола, $S_0 = S(\emptyset)$ – поверхность раздела фаз до помола. Если суммарная толщина сандвича из карбидов, нарастающего за время *t* на межфазной поверхности, составляет $L(t) = \sqrt{2Dt}$, где $D = \left(\sum_i \sqrt{A_i}\right)^2$ – эффективный коэффициент диффузии, то объёмная доля карбидов без учёта экранирования продуктами реакции равна

$$\alpha_0(t) = \frac{1}{V} \left[\int_0^t \frac{dS(t')}{dt'} \cdot \sqrt{2D \cdot (t-t')} \cdot dt' + S_0 \cdot \sqrt{2Dt} \right] = \frac{S_0}{V} \sqrt{\frac{\pi}{2} D\tau} \cdot e^{t/\tau} \cdot erf\left(\sqrt{\frac{t}{\tau}}\right),$$

где V- объём смеси.

С учётом экранирования имеем $d\alpha = (1 - \alpha) \cdot d\alpha_0$, а значит, величина $\alpha(t)$ может быть описана кинетическим уравнением

$$\alpha(t) = 1 - e^{-\alpha_0(t)}$$

Из табл. 4 можно видеть, что инкубационный период карбидообразования в барабане мельницы составляет около 30 минут. Возможно, этот период обусловлен развитием не только межфазной, но и межзёреной поверхности в хроме, которая возникает при измельчении зерна. Развитая сетка границ зёрен в Сг является путём ускоренной диффузии углерода при низких температурах. Однако, карбидообразование, изученное в настоящей работе как непосредственно во время помола, так и при последующем быстром отжиге, удовлетворительно описывается и обычной внутризёреной диффузией углерода в хроме. Из-за отсутствия данных по диффузии С в карбидах Cr, вместо эффективного коэффициента диффузии углерода в сандвиче из карбидов использовался коэффициент С в α-Cr.

В принципе, коэффициенты диффузии С в равновесных карбидах Сг могли бы быть определены экспериментально отжигом макроскопического контакта Cr/C при температуре 800 ÷ 1200°C в течение 1-10 часов и последующем измерением на шлифе под микроскопом толщин прослоек наросших карбидов.

57

В табл. 19 приведены расчётные значения путей диффузии С в Сr за время быстрого отжига в установке ДTA, то есть при равномерном нагреве от комнатной температуры T_r до температуры начала экзотермического превращения – карбидообразования (T_{onset}) в предположении радиационного теплообмена

Таблица 19. Оценка длинны диффузионного пути углерода в хроме при механоактивации и высокоскоростной термообработке системы Cr-C

продолжительность активации <i>f</i> _{MC}	Длина диффузионного пути С в Сг при механо- активации, t=250 ⁰ C <i>L</i> _{MC}	Время нагрева до начала взаимодействия компонентов шихты Cr-C при ДТА <i>t</i> onset	Температу взаимод компонен Сr-С п <i>T_{ons}</i>	гра начала действия гов шихты ри ДТА	Длина диффузионного пути С в Сг при ДТА до начала взаимодействия $L_{ДТА}$	Суммарная длина диффузионного пути С в Сг при механоактивации и ДТА <i>L</i>	
МИН.	НМ	с	⁰ C	K	НМ	НМ	
9	99	112	693	966	5210	5210	
12	114	90	629	902	2710	2710	
15	128	75	488	762	581	585	
18	140	75	521	795	849	860	
21	151	63	437	710	279	317	
24	161	64	438	711	285	327	
27	171	50	330	603	47	177	
30	181	40	301	574	24	183	

Диффузионный путь за время отжига равен

$$L_{\rm ДTA} = \sqrt{2\int_{0}^{t_{\rm onset}} D(t')dt'}$$

где
$$D(t') = D_0 e^{-\frac{Q}{RT(t)}}$$
, $D_0 = 8,7 \cdot 10^{-3} \text{ см}^2/\text{с}$, $Q = 110 \text{ кДж/моль}$.

Суммарный диффузионный путь

$$L = \sqrt{L_{\rm MC}^2 + L_{\rm ДTA}^2} \quad ,$$

где $L_{\rm MC} = \sqrt{2D(t_{\rm MC}) \cdot t_{\rm MC}}$ – диффузионный путь при механосинтезе продолжительностью $t_{\rm MC}$, протекающем при температуре ~250°C.

Установлению равновесия препятствует кинетический фактор – превышение частицами Cr или прослойками Cr в рулете длины диффузионного пути углерода в хроме при механосинтезе и отжиге. C увеличением времени активации от 0 до 30 мин, рулет всё более истончается и доля исходного реагента – Cr, успевающего при последующем быстром отжиге вступить в реакцию с углеродом (или кислородом) увеличивается с 30% до 100%.

3.4. Термодинамическая оценка возможных реакций

Термодинамические расчёты возможных реакций в системе Cr-C и реакций образования карбидов хрома – $Cr_3C_{2,}$ $Cr_7C_{3,}$ $Cr_{23}C_6$ при взаимодействии оксида хрома Cr_2O_3 с углеродом в интервале температур 300-1300 К выполнены с использованием программы ИВТАНТЕРМО.

$$3,833Cr+C=0,167Cr_{23}C_{6}, (1)$$

$$2,333Cr+C=0,333Cr_{7}C_{3}, (2)$$

$$1,5Cr+C=0,5Cr_{3}C_{2}, (3)$$

$$0,259Cr_{23}C_{6}+C=0,852Cr_{7}C_{3}, (4)$$

$$0,6Cr_{7}C_{3}+C=1,4Cr_{3}C_{2}, (5)$$

$$0,107Cr_{23}C_{6}+C=0,821Cr_{3}C_{2}, (6)$$

$$4Cr+3O_{2}=2Cr_{2}O_{3}, (7)$$

$$0.231Cr_{2}O_{3}+C=0,154Cr_{3}C_{2}+0,692CO, (8)$$

$$0.353Cr_{2}O_{3}+C=0,235Cr_{3}C_{2}+0,529CO_{2}, (9)$$

$$0.259Cr_{2}O_{3}+C=0,074Cr_{7}C_{3}+0,778CO, (10)$$

$$0.424Cr_{2}O_{3}+C=0,121Cr_{7}C_{3}+0,636CO_{2}, (11)$$

$$0.284Cr_{2}O_{3}+C=0,025Cr_{23}C_{6}+0,852CO, (12)$$

$$0.495Cr_{2}O_{3}+C=0,043Cr_{23}C_{6}+0,742CO_{2}, (13)$$

$$0.333Cr_2O_3 + C = 0,667Cr + CO,$$
 (14)

$$0.667 Cr_2 O_3 + C = 1,333 Cr + CO_2$$
(15)

]	1		2	3		4		5		
	3 933([¬] r⊥C−	2 2220	~r⊥C−	150	·+C-	0.250Cr	<u>C +C-</u>	0.60 m	<u>C +C-</u>	
	3,0330		2,3330	C= C	1,501	τ C -	0,23901	$23C_6 + C - C$		C3⊤C−	
	0,1670	$\Gamma_{23}\Gamma_{6}$	0,333	Cr ₇ C ₃	0,5Cr ₃ C ₂		0,8520	$\mathbf{Lr}_{7}\mathbf{C}_{3}$	1,4Cr ₃ C ₂		
Т	ΔH	ΔG	ΔH	ΔG	ΔH	ΔG	ΔН	ΔG	ΔH	ΔG	
К	кДж/моль	кДж/моль	кДж/моль	кДж/моль	кДж/моль	кДж/моль	кДж/моль	кДж/моль	кДж/моль	кДж/моль	
298,15	-49,265	-51,002	-48,618	-50,475	-41,000	-41,474	-47,987	-50,230	-27,200	-25,153	
300,00	-49,253	-51,012	-48,607	-50,486	-40,990	-41,477	-47,975	-50,244	-27,192	-25,141	
350,00	-48,862	-51,338	-48,250	-50,828	-40,700	-41,582	-47,636	-50,648	-27,028	-24,813	
400,00	-48,375	-51,724	-47,831	-51,225	-40,385	-41,729	-47,285	-51,102	-26,907	-24,505	
450,00	-47,859	-52,176	-47,397	-51,677	-40,063	-41,917	-46,938	-51,601	-26,793	-24,211	
500,00	-47,320	-52,684	-46,954	-52,176	-39,730	-42,141	-48,603	-52,137	-26,665	-23,931	
550,00	-46,777	-53,247	-46,515	-52,719	-39,390	-42,399	-46,285	-52,706	-26,511	-23,665	
600,00	-46,244	-53,859	-46,090	53,302	-39,047	-42,687	-45,985	-53,303	-26,322	-23,414	
650,00	-45,734	-54,514	-45,686	-53,92	-38,705	-43,005	-45,704	-53,924	-26,097	-23,181	
700,00	-45,258	-55,207	-45,311	-54,568	-38,367	-43,348	-45,440	-54,566	-25,834	-22,966	
750,00	-44,826	-55,934	-44,968	-55,241	-38,036	-43,715	-45,192	-55,227	-25,531	-22,772	
800,00	-44,447	-56,687	-44,664	-55,936	-37,716	-44,105	-44,959	-55,904	-25,191	-22,598	
850,00	-44,129	-57,462	-44,402	-56,649	-37,411	-44,513	-44,739	-56,594	-24,815	-22,448	
900,00	-43,878	-58,254	-44,186	-57,375	-37,123	-44,939	-44,530	-57,298	-24,406	-22,320	
950,00	-43,701	-59,057	-44,109	-58,113	-36,855	-45,381	-44,331	-58,013	-23,966	-22,216	
1000,00	-43,605	-59,869	-43,903	-58,858	36,612	-45,836	-44,139	-58,738	-23,498	-22,136	
1050,00	-43,593	-60,682	-43,842	-59,608	-36,394	-46,303	-43,952	-59,472	-23,007	-22,080	
1100,00	-43,671	-61,495	-43,837	-60,359	36,206	-46,779	-43,770	-60,216	-22,497	-22,048	
1150,00	-43,842	-62,301	-43,890	-61,109	-36,049	-47,264	-43,590	-60,967	-21,971	-22,039	
1200,00	-44,109	63,099	-44,002	-61,855	-35,927	-47,754	-43,410	-61,272	-21,434	-22,053	
1250,00	-44,475	-63,883	-44,175	-62,596	-35,841	-48,249	-43,230	-62,494	-20,892	-22,090	
1300,00	-44,942	-64,650	-44,408	-63,328	-35,794	-48,746	-43,049	-63,268	-20,348	-22,149	

	(6		7		8		9		
	0,107Cr 0,821	$_{23}C_6+C=$ Cr ₃ C ₂	$ \begin{array}{c} 0.231Cr_2O_3 + C = \\ 0.154Cr_3C_2 + \\ 0.692CO \end{array} $				$0.353Cr_2O_3 + C = 0.235Cr_3C_2 + 0.529CO_2$			
Т	ΔΗ	ΔG	ΔΗ	ΔG	ΔΗ	ΔG	ΔΗ	ΔG		
К	кДж/моль	кДж/моль	кДж/моль	кДж/моль	кДж/моль	кДж/моль	кДж/моль	кДж/моль		
298,15	-35,757	-35,475	-2281.202	-2118.066						
300,00	-35,748	-35,473	-2281.093	-2117.054	174.0769	136.4474	174.9262	145.2902		
350,00	-35,513	-35,447	-2279.283	-2089.884	174.1245	130.174	174.7247	140.3712		
400,00	-35,299	-35,452	-2277.645	-2062.936	174.1387	123.8933	174.5653	135.4737		
450,00	-35,090	-35,483	-2275.784	-2036.209	174.0789	117.6156	174.3675	130.5989		
500,00	-34,879	-35,538	-2273.798	-2009.695	173.965	111.3475	174.1486	125.7473		
550,00	-34,659	-35,615	-2271.764	-1983.383	173.81	105.0929	173.9197	120.9182		
600,00	-34,427	-35,712	-2269.734	-1957.257	173.6235 98.854		173.6881	116.1101		
650,00	-34,180	-35,829	-2267.743	-1931.298	173.4127	92.6316	173.4588	111.3212		
700,00	-33,919	-35,966	-2265.821	-1905.490	173.1831	86.4262	173.2352	106.5499		
750,00	-33,641	-35,121	-2263.988	-1879.817	172.9393	80.2377	173.0197	101.7942		
800,00	-33,348	-36,296	-2262.259	-1854.262	172.6847	74.0658	172.8141	97.0526		
850,00	-33,039	-36,490	-2260.649	-1828.813	172.4227	67.9102	172.6198	92.3236		
900,00	-32,714	-36,702	-2259.168	-1803.454	172.1557	61.77	172.4376	87.6056		
950,00	-32,376	-36,933	-2257.824	-1778.174	171.886	55.6448	172.268	82.8974		
1000,00	-32,025	-37,182	-2256.625	-1752.961	171.6153	49.5339	172.1113	78.1977		
1050,00	-31,663	-37,448	-2255.577	-1727.804	171.3453	43.4365	171.9679	73.5056		
1100,00	-31,290	-37,733	-2254.685	-1702.693	171.0774	37.3519	171.8376	68.8201		
1150,00	-30,910	-38,034	-2253.954	-1677.620	170.8126	31.2794	171.7204	64.1401		
1200,00	-30,524	-38,352	-2253.386	-1652.574	170.5518	25.2183	171.6161	59.465		
1250,00	-30,134	-38,686	-2252.985	-1627.549	170.2957	19.168	171.5244	54.794		
1300,00	-29,742	-39,036	-2252.752	-1602.537	170.0448	13.1279	171.4448	50.1263		

	1	0	1	1	1	2	1	3	
	0.259Cı	$C_{2}O_{3} + C$	0.424Cı	$c_{2}O_{3} + C$	0.284Ci	$r_2O_3 + C$	0.495Cı	$C_{2}O_{3} + C$	
	= 0.074	$Cr_7C_3 +$	= 0.121	$Cr_7C_3 +$	= 0.025	$Cr_{23}C_{6} +$	$= 0.043 \mathrm{Cr}_{23} \mathrm{C}_{6} +$		
	0.77	8CO	0.63	6CO ₂	0.85	2CO	0.742CO ₂		
1	ΔН	ΔG	ΔН	ΔĠ	ΔΗ	ΔG	ΔΗ	ΔG	
К	кДж/моль	кДж/моль	кДж/моль	кДж/моль	кДж/моль	кДж/моль	кДж/моль	кДж/моль	
300,00	198.925	156.3965	215.7579	179.7204	222.4309	176.0628	259.4955	217.8462	
350,00	198.9581	149.3081	215.4825	173.7413	222.4358	168.3369	259.1198	210.9406	
400,00	198.9592	142.2141	215.2666	167.7923	222.4045	160.6094	258.8116	204.0781	
450,00	198.878	135.125	215.0058	161.8734	222.2836	152.8915	258.4517	197.2577	
500,00	198.7341	128.0486	214.7168	155.9851	222.0952	145.1908	258.0612	190.4791	
550,00	198.5409	120.989	214.4104	150.1266	221.8544	137.5116	257.6531	183.7405	
600,00	198.3082	113.9489	214.094	144.2966	221.5721	129.8562	257.2365	177.0396	
650,00	198.0436	106.9294	213.7729	138.493	221.2566	122.2258	256.8174	170.3734	
700,00	197.7531	99.9314	213.4508	132.7145	220.9145	114.6208	256.4001	163.7396	
750,00	197.4418	92.9549	213.1307	126.9587	220.5511	107.0409	255.988	157.1354	
800,00	197.1139	85.9997	212.8149	121.2242	220.171	99.4859	255.5833	150.5584	
850,00	196.7731	79.0655	212.5054	115.5093	219.778	91.955	255.1881	144.0065	
900,00	196.4226	72.1516	212.2036	109.8125	219.3754	84.4476	254.8038	137.4776	
950,00	196.0651	65.2573	211.9108	104.1321	218.9662	76.9627	254.4315	130.9697	
1000,00	195.7034	58.382	211.6281	98.4668	218.553	69.4995	254.0723	124.481	
1050,00	195.3395	51.525	211.3565	92.8155	218.1379	62.057	253.7269	118.0101	
1100,00	194.9754	44.6851	211.0968	87.1769	217.7231	54.6344	253.3961	111.5552	
1150,00	194.613	37.8619	210.8497	81.5497	217.3103	47.2305	253.0804	105.1149	
1200,00	194.2538	31.0544	210.6159	75.933	216.9011	39.8446	252.7804	98.6881	
1250,00	193.8991	24.2617	210.396	70.3259	216.4968	32.4755	252.4966	92.2736	
1300,00	193.5501	17.4831	210.1906	64.7271	216.0986	25.1225	252.2293	85.87	

	1	4	1	5	
	0.333Ci = 0.6670	$c_2 O_3 + C$ Cr + CO	0.667Cr ₂ 1.333C	$2O_3 + C =$ r + CO ₂	
Т	ΔΗ	ΔG	ΔΗ	ΔG	
К	кДж/моль	кДж/моль	кДж/моль	кДж/моль	
298,15					
300,00	269.6622	215.5249	366.8525	311.3063	
350,00	269.6019	206.51	366.2139	302.1081	
400,00	269.4826	197.5034	365.6332	292.9885	
450,00	269.2532	188.5191	364.9733	283.9476	
500,00	268.9406	179.5648	364.2639	274.9826	
550,00	268.5657	170.6449	363.5294	266.0898	
600,00	268.1439	161.7613	362.7871	257.2643	
650,00	267.6873	152.9144	362.0496	248.5006	
700,00	267.2053	144.1037	361.3264	239.7935	
750,00	266.7061	135.328	360.6255	231.1371	
800,00	266.1963	126.5861	359.953	222.5267	
850,00	265.6821	117.8762	359.3145	213.9573	
900,00	265.1685	109.1966	358.7144	205.4245	
950,00	264.66	100.5453	358.1563	196.9236	
1000,00	264.1606	91.9207	357.6437	188.4511	
1050,00	263.674	83.3207	357.1793	180.0032	
1100,00	263.2033	74.7436	356.7659	171.5762	
1150,00	262.7512	66.1874	356.4053	163.1666	
1200,00	262.32	57.6505	356.0994	154.7719	
1250,00	261.9119	49.1311	355.8496	146.3885	
1300,00	261.5285	40.6275	355.6574	138.014	

Реакции (1-7) в указанном интервале температур термодинамически возможны, из чего можно сделать вывод, что образование высшего карбида хрома Cr_3C_2 может идти через образование среднего Cr_7C_3 и низшего карбида

 $Cr_{23}C_6$, что подтверждается данными РФА смеси Cr-C после механообработки и высокоскоростной термообработки до 1000°C (табл. 1, 2).

Термодинамические расчёты реакций (8-15) показали, что взаимодействие оксида хрома Cr_2O_3 и углерода, с образованием хрома и карбидов хрома – $Cr_{23}C_6$, Cr_7C_3 , Cr_3C_2 невозможно в интервале температур 300-1300К.

3.5. Термодинамическая оценка равновесного состава фаз

Теоретический расчёт равновесных составов фаз в системе Cr–C–N–O в интервале температур 300–900К выполнен с использованием программы ThermoDyn 3.5 (табл.20). Показано наличие на всём исследуемом интервале

Таблица 20. Расчётный равновесный состав фаз исходной системы Cr–8,67 г; C–1,33 г; N₂–0,176 л; O₂–0,047 л в зависимости от температуры

Температура,		_										
К	Газова	я фаза		Конденсированная фаза								
	N_2		Cr_3C_2		Cr_2O_3		С		Итого			
300-900		%		%		%						
	M ³	(объем)	Г	(масс)	Г	(масс)	Г	%	Г			
	0,000176	100	9,837	97,7	0,2126	2,12	0,01723	0,18	10,067			

температур (300–900К) наличие двух соединений хрома – карбида Cr₃C₂ (97,7%) и оксида Cr₂O₃ (2,12%), а также свободного углерода С (0,18%). Это не противоречит экспериментальным данным, приведённым в табл. 6.

Факторами, способствующими протеканию термодинамически возможных реакций с образованием стабильных фаз, являются: увеличение межфазной поверхности хром – углерод при измельчении, рост объёмных долей границ зёрен, значительно усиливающих диффузию углерода в хроме,

образование дисперсного «рулета» из перемежающихся слоёв хрома и углерода, утонение слоёв хрома до длин диффузионного пути углерода в хроме, постепенный разогрев (за время механоактивации ~10 мин) мелющей среды внутри барабана-активатора до конечной температуры ~250°С. Стоит также заметить, что на фоновую температуру шаров ~250°С во время ударов накладывается кратковременный (~10⁻³с) дополнительный локальный разогрев контактных зон на 100-300°С. Это обстоятельство может привести к увеличению длины диффузионного пути, так как коэффициент диффузии углерода в хром D_1 , соответствующий фоновой температуре, возрастает.

С использованием программы ThermoDyn 3.5 произведёны теоретические расчёты, равновесного состава фаз в системе Cr – C – O – Ar с учётом возможной адсорбции разного количества кислорода от 0,1 до 0,5 г из воздушной среды барабана–активатора на поверхности порошков хрома и углерода при механообработке. Расчёты проводились в интервале температур 300–1300К, соответствующем условиям высокоскоростной термообработки.

Таблица 21. Расчётный равновесный состав фаз 10,1 г исходной смеси Cr – 8,67 г; C – 1,33 г; O₂– 0,1 г; Ar- 0,1 м³, с учётом 0,1г (0,99% по массе) адсорбированого кислорода, в зависимости от температуры

Температур							Конте	ucupopauu	ag daaa					
a			1 азовая Фа	5a					Кондел	нсированн	ая фаза			итого
	Ar		CO		итого	Cr	Cr_2C_2		Cr ₇ C ₂		Cr ₂ O ₃		С	
		%								2	%		% масс	Г
К	M ³	объем	M ³	% объем	м ³	Г	% масс	Г	% масс	Г	масс	Г		
													0,28	10,100
300-700	0,1	100	0	0	0,1	9,755	96,58	0	0	0,3167	3,14	0,02819		
													0,28	10,100
800	0,1	100	0	0	0,1	9,755	96,58	0	0	0,3166	3,14	0,02816		
													0,27	10,097
900	0,1	100	0	0	0,1	9,76	96,64	0	0	0,3111	3,09	0,02628		
													0	10,054
1000	0,1	100	0	0	0,1	9,82	97,7	0	0	0,2343	2,3	0		
													0	9,980
1100	0,1	99,9	0,00009546	0,1	0,1001	8,965	89,82	0,9148	9,17	0,1006	1,01	0		
													0	9,925
1150	0,1	99,9	0,0001399	0,1	0,1001	8,322	83,85	1,603	16,15	0	0	0		
													0	9,925
1200	0,1	99,9	0,00014	0,1	0,1001	8,322	83,85	1,603	16,15	0	0	0		
													0	9,925
1300	0,1	99,9	0,00014	0,1	0,1001	8,322	83,85	1,603	16,15	0	0	0		

Таблица 22. Расчётный равновесный состав фаз 10,2 г исходной смеси Cr – 8,67 г; C – 1,33 г; O₂ – 0,2 г; Ar- 0,1 м³, с учётом 0,2г (1,96% по массе) адсорбированого кислорода, в зависимости от температуры

	Газовая Фаза						Конденсированная фаза									
Т, К	Ar		СО		итого	Cr ₃ C ₂		Cr ₇ C ₃		Cr ₂ O ₃		C		итого		
	M ³	% объем	м ³	% объем	M ³	Г	% масс	Г	% масс	Г	% масс	Г	% масс	Г		
300-700	0,1	100	0	0	0,1	9,505	93,19	0	0	0,6333	6,21	0,06156	0,6	10,200		
800	0,1	100	0	0	0,1	9,505	93,19	0	0	0,6332	6,21	0,06152	0,6	10,200		
900	0,1	100	0	0	0,1	9,529	93,6	0	0	0,6032	5,9	0,05125	0,5	10,183		
1000	0,1	99,9	0,00006	0,1	0,1001	9,612	94,95	0	0	0,4975	4,9	0,01506	0,15	10,125		
1050	0,1	99,9	0,00007944	0,1	0,1001	9,647	95,51	0	0	0,4535	4,49	0	0	10,101		
1100	0,1	99,9	0,00009522	0,1	0,1001	9,419	93,44	0,2443	2,42	0,4178	4,14	0	0	10,081		
1150	0,1	99,7	0,0002797	0,3	0,1003	6,748	68,51	3,102	31,49	0	0	0	0	9,850		
1200	0,1	99,7	0,0002799	0,3	0,1003	6,747	68,5	3,103	31,5	0	0	0	0	9,850		
1300	0,1	99,7	0,00028	0,3	0,1003	6,747	68,5	3,103	31,5	0	0	0	0	9,850		

Таблица 23. Расчётный равновесный состав фаз 10,3 г исходной смеси Cr – 8,67 г; C – 1,33 г; O₂ – 0,3 г; Ar- 0,1 м³, с учётом 0,3 г (2,91% по массе) адсорбированого кислорода, в зависимости от температуры

		Γ	азовая Фаз	за		Конденсированная фаза									
	Ar		СО		ИТОГО	Cr ₃ C ₂		Cr ₇ C ₃		Cr ₂ O ₃		С		итого	
T,K	м ³	% объем	M ³	% объем	M ³	Г	% масс	Г	% масс	Г	% масс	г	% масс	Г	
300-700	0,1	100	0	0	0,1	9,255	89,86	0	0	0,95	9,22	0,09492	0,92	10,300	
800	0,1	100	0	0	0,1	9,255	89,86	0	0	0,9499	9,22	0,09489	0,92	10,300	
900	0,1	100	0	0	0,1	9,26	89,91	0	0	0,9444	9,18	0,09301	0,91	10,297	
1000	0,1	99,9	0,00006	0,1	0,1001	9,362	91,6	0	0	0,814	7,95	0,04836	0,45	10,224	
1100	0,1	99,9	0,0001225	0,1	0,1001	9,474	93,34	0	0	0,6727	6,66	0	0	10,147	
1150	0,1	99,7	0,0003176	0,3	0,1003	6,649	67,15	3,023	30,53	0,2308	2,32	0	0	9,903	

1200	0,1	99,6	0,0004197	0,4	0,1004	5,173	52,92	4,602	47,08	0	0	0	0	9,775
1300	0,1	99,6	0,0004199	0,4	0,1004	5,172	52,91	4,603	47,09	0	0	0	0	9,775

Таблица 24. Расчётный равновесный состав фаз 10,4 г исходной смеси Cr – 8,67 г; C – 1,33 г; O₂ – 0,4 г; Ar- 0,1 м³, с учётом 0,4 г (3,84% по массе) адсорбированого кислорода, в зависимости от температуры

			Газовая Фа	3a		Конденсированная фаза									
T,K	Ar		СО		итого	Cr ₃ C ₂		Cr ₇ C ₃		Cr ₂ O ₃		С		итого	
	м ³	% объем	M ³	% объем	M ³	Г	% масс	Г	% масс	Г	% масс	Г	% масс	Г	
300- 800	0,1	100	0	0	0,1	9,005	86,59	0	0	1,267	12,18	0,1283	1,23	10,400	
900	0,1	100	0	0	0,1	9,009	86,64	0	0	1,261	12,14	0,1264	1,22	10,396	
1000	0,1	99,9	0,00006	0,1	0,1001	9,112	88,28	0	0	1,131	10,94	0,08173	0,78	10,325	
1050	0,1	99,8	0,0001655	0,2	0,1002	9,301	91,25	0	0	0,8919	8,75	0	0	10,193	
1100	0,1	99,8	0,0001655	0,2	0,1002	9,301	91,25	0	0	0,8919	8,75	0	0	10,193	
1150	0,1	99,7	0,0003197	0,3	0,1003	7,069	70,69	2,388	23,88	0,5427	5,43	0	0	10,000	
1200	0,1	99,4	0,0005595	0,6	0,1006	3,599	37,1	6,101	62,9	0	0	0	0	9,700	
1300	0,1	99,4	0,0005599	0,6	0,1006	3,597	37,08	6,103	62,92	0	0	0	0	9,700	

Таблица 25. Расчётный равновесный состав фаз 10,5 г исходной смеси Cr – 8,67 г; C – 1,33 г; O₂– 0,5 г; Ar- 0,1 м³, с учётом 0,5 г (4,76 % по массе) адсорбированого кислорода, в зависимости от температуры

	Газовая Фаза						Конденсированная фаза									
T,K	Ar		СО		ИТОГО	Cr ₃ C ₂		Cr ₇ C ₃		Cr ₂ O ₃		С		итого		
	M ³	% объем	M ³	% объем	M ³	Г	% масс	Γ	% масс	Γ	% масс	Γ	% масс	Γ		
300- 800	0,1	100	0	0	0,1	8,755	83,38	0	0	1,583	15,08	0,1617	1,54	10,500		
900	0,1	100	0	0	0,1	8,759	83,43	0	0	1,578	15,04	0,1597	1,53	10,497		
1000	0,1	99,9	0,00006019	0,1	0,1001	8,863	85,04	0	0	1,447	13,86	0,115	1,1	10,425		
1050	0,1	99,8	0,0002086	0,2	0,1002	9,128	89,14	0	0	1,111	10,86	0	0	10,239		
1100	0,1	99,8	0,0002086	0,2	0,1002	9,128	89,14	0	0	1,111	10,86	0	0	10,239		

1150	0,1	99,7	0,0003176	0,3	0,1003	7,55	74,75	1,688	16,7	0,8642	8,55	0	0	10,102
1200	0,1	99,3	0,0006993	0,7	0,1007	2,025	21,04	7,6	78,96	0	0	0	0	9,625
1300	0,1	99,3	0,0006998	0,7	0,1007	2,022	21,01	7,603	78,99	0	0	0	0	9,625

Расчёты показали, что при нагреве смеси Cr–C–O до $t \le 1000^{\circ}$ C должно иметь место равновесие трёх фаз – соединений высшего карбида хрома – Cr₃C₂, среднего карбида хрома – Cr₇C₃, оксида хрома – Cr₂O₃ и свободного углерода в различных соотношениях (% по массе) в зависимости от исходного содержания кислорода в смеси. Соотношения Cr₃C₂ : Cr₇C₃ должны быть равны 83,85:16,15; 68,5:31,5; 52,91:47,09; 37,08:62,92; 21,01:78,99 при содержании адсорбированного кислорода на частицах хрома и углерода 0,1; 0,2; 0,3, 0,4 и 0,5 г соответственно.

В реальных условиях, по данным анализа смеси Cr-C после 33 мин механообработки (табл.12), содержание адсорбированного кислорода составляет 2,8%, а по данным РФА после высокоскоростной термообработки до 1000°C (табл.6) весь кислород расходуется на образование Cr₂O₃.

Содержание карбидов хрома (Cr_3C_2 и Cr_7C_3) в смеси Cr-C после 33 мин механообработки и высокоскоростной термообработки до 1000°C равно 71,4 и 21,2%, соответственно, что сопоставимо с рассчитанными содержаниями по программе ThermoDyn 3.5. (83,85 и 16,15%).

3.6. Механизм карбидообразования при механоактивации

Для ускорения диффузионных превращений в планетарной центробежной мельнице по сравнению со стационарными условиями большое значение имеет нарастающая со временем помола площадь межфазной поверхности. Так, если частица хрома с первоначальным размером 7 мкм утоняется до пластины «рулета» в 200 нм, то её толщина убывает в 35 раз и, соответственно, во столько же раз возрастает площадь пластины, то есть поверхность контакта с углеродом. Следовательно, и скорость диффузии углерода в хром увеличивается в 35 раз (рис. 8-10).

Рис. 8. Электронномикроскопические снимки смеси Cr-C после механоактивации 12 мин

Рис. 9. Электронномикроскопические снимки смеси Cr-C после механоактивации 27 мин

Рис. 10. Электронномикроскопические снимки смеси Cr-C после механоактивации 40 мин

Эволюция дисперсного «рулета» подтверждается электронными изображениями структуры частиц смеси Cr-C после 12 мин (рис. 8), 27 мин (рис. 9) и 40 мин (рис. 10) механообработки на шлифах порошка, снятых на сканирующем микроскопе LEO EVO-40.

На снимках, полученных после 12 мин механообработки (рис. 8), присутствуют частицы и слои хрома, длиной до 100 мкм, и толщиной до 20 мкм. То есть после 12 мин помола происходит измельчение частиц хрома, с тенденцией к принятию ими линейно вытянутой формы, которую, в дальнейшем, при увеличении длительности механобработки до 27 мин принимает большинство частиц хрома. Это свидетельствует о расплющивании первоначально равноосных частиц Сг в пластины.

Ha электронных изображениях смеси Cr-C после 27 МИН механообработки (рис. 9) присутствуют частицы дисперсного «рулета» из перемежающихся слоев хрома и углерода, имеющие размеры по длине до 20 мкм и по толщине до 10-14 мкм, где между слоями хрома, с утонением в разных частях до 200 нм и менее присутствуют слои углерода, с утонением в разных частях до 100 нм и менее. Очевидно, что при продолжении механообработки смеси Cr-C до 33 мин, происходит дальнейшее утонение частиц хрома и слоев хрома в частицах, состоящих из дисперсного «рулета» до длины диффузионного пути углерода в хроме, что сопровождается диффузионным превращением – карбидообразованием.

Указанная выше минимальная толщина слоев Сг в «рулете» (~ 200 нм) хорошо коррелирует со значением длины диффузионного пути С в Сг при механоактивации $L_{MC} = 171$ нм после 27 мин помола (см. табл. 19). После 30 мин обработки наиболее крупные частицы Сг имеют толщину < 10 мкм, так что по завершении ДТА (~ 120 с нагрева и ~ 7 мкм диффузионного пути углерода в хроме) весь хром превращается в карбиды. Собственно говоря,

диффузионное поглощение пластины Cr происходит с двух сторон, так что указанные в табл.19 диффузионные пути можно удвоить.

После помола в течение 12 мин частицы Сг имеют размер ~ 2,7 мкм (слоистой структуры еще нет), тогда как после 27 мин МС толщины прослоек Сг в «рулетах» доходят до ~130 нм. Эти величины хорошо коррелируют с приводимыми в табл. 19 значениями полного диффузионного пути углерода в хроме.

смеси Ha электронных изображениях Cr–C после 40 МИН механообработки (рис. 10) наблюдаются частицы, состоящие из дисперсного «рулета» и имеющие менее выраженную и более расплывчатую структуру слоев – так называемый оплавленный вид, что, очевидно, является проявлением взаимодействия хрома и углерода с образованием толстых и заметных прослоек карбидов Cr_3C_2 , Cr_7C_3 , $Cr_{23}C_6$ на границах раздела Cr/C, поскольку фазы с большим содержанием углерода выглядят более тёмными. В этом случае конгломерированные частицы карбидов Cr, состоящие из дисперсного «рулета», имеют в основном длину в пределах 0,5-5,0 мкм (иногда до 10 мкм), что примерно в 2 раза меньше размеров после 27 мин механообработки (см. рис. 9).

В процессе механообработки длительностью до 43 мин не все частицы хрома и слои Cr в частицах-«рулетах» утоняются до длины «мельничного» диффузионного пути углерода в хроме с последующим диффузионным превращением — карбидообразованием. Полного взаимодействия компонентов смеси Cr–C с формированием высшего карбида Cr_3C_2 , составу которого отвечает пропорция смеси, при механообработке не происходит, имеет место лишь частичное превращение. После 43 мин помола общая доля карбидов достигает ~ 60 мас.% (табл.3).

Температура начала образования вторичных карбидов при ДТА (рис.2) в зависимости от времени помола сначала падает (до $t_{\rm MC} = 30$ мин), а затем

растёт. Это происходит потому, что утонение «рулета» со временем помола снижает температуру диффузионного превращения, тогда как повышение содержания балласта в виде первичных карбидов, образовавшихся в барабане in situ, тормозит диффузионный транспорт.

Механообработку не следует доводить ДО предельного стадии (~10 так измельчения зерна нм), как при ЭТОМ усиливается карбидообразование в барабане при относительно небольшой температуре (~ 250 °C) за счет зёрнограничной диффузии с низкой энергией активации. Значительные экзотермические тепловые эффекты при ДТА (~10 кДж/моль) могут быть связаны только с формированием вторичных карбидов (табл.6). Контрольный длительный помол чистого хрома последующей С дифференциальной сканирующей калориметрией (ДСК) показал, что в дефектах его решётки, создаваемых в ходе механосинтеза, может быть запасена лишь весьма незначительная энергия (< 1 кДж/моль).

Подобным образом и аморфная сажа не способна аккумулировать большую энергию при помоле, В отличие графита. который ОТ механоактивацией удается измельчить до удельной поверхности частиц ~ 500 м²/г и запасенной в ней энергией ~ 30 кДж/моль. В случае смеси хром-сажа адсорбцией газов была измерена всего лишь удельная поверхность, колеблющаяся в интервале 1–10 м²/г в зависимости от времени помола (из-за конкурирующих процессов растрескивания и сваривания частиц порошка, высвобождения сажи и нового её запечатывания в «рулеты»).

3.7. Изменение характеристик смеси при механоактивации и последующей высокоскоростной термообработке

Результаты влияния продолжительности механоактивации смеси Cr-C (Cr:C= 86,7:13,3) от 0 до 43 мин на удельную поверхность, диаметр частиц и энергию открытой поверхности смеси после механообработки представлены в табл. 26.

Исследуемый образец	S _{уд} , м ² /г	Диаметр частиц D, Å	Энергия открытой поверхности U, кДж/моль
Хром исходный	0,14	59600	0,017
Сажа исходная	8,40	3150	0,32
Исходная смесь Cr-С	1,25	8000	0,12
Механообработка 9 мин.	4,05	2470	0,40
Механообработка 21 мин.	10,30	970	1,02
Механообработка 27 мин.	4,30	2330	0,43
Механообработка 30 мин.	6,10	1640	0,61
Механообработка 30 мин. и ДТА	2,80	3570	0,28
Механообработка 33 мин.	1,57	6370	0,16
Механообработка 36 мин.	10,20	980	1,01
Механообработка 43 мин.	3,70	2700	0,37
	1	1	

Таблица 26. Характеристики исходных порошков сажи и хрома и шихты Cr-C после механоактивации и высокоскоростной термообработки при 1000°C

Диаметр частиц рассчитывали из данных определения удельной поверхности.

Для сферических частиц компонентов смеси диаметром D имеем

$$S_{\rm yg} = \frac{\pi D^2}{\frac{\pi}{6} \cdot D^3 \cdot \rho} = \frac{6}{\rho \cdot D},$$

Плотности хрома и сажи равны соответственно $\rho_1 = 7,19$ г/см³ и $\rho_2 = 2,27$ г/см³, их весовые доли $P_1 = 0,867$ и $P_2 = 0,133$. Средняя плотность смеси равна $\rho_3 = \left(\sum_i \frac{P_i}{\rho_i}\right)^{-1} = 5,58$ г/см³.

Зависимость *D* в табл.26 получена пересчётом $S_{yg} \rightarrow D$, причём, при пересчёте использовалась средняя плотность смеси.

Зависимость U в табл.26 представляет собой результат пересчёта поперечника частиц D в молярную энергию открытой (свободной) поверхности

$$U=H_s \cdot d/D$$

где *H*_s – теплота сублимации, *d* –диаметр атома.

Исходные порошки хрома и сажи имеют удельную поверхность S_{yg} соответственно 0,14 и 8,40 м²/г, с пересчитанными соответственно диаметрами частиц D – 5960 и 315 нм, и энергией открытой поверхности U – 0,017 и 0,32 кДж/моль.

Для неактивированной исходной смеси Cr-C эти величины составляют значения $S_{va} - 1,25 \text{ м}^2/\Gamma$, D – 800 нм, U – 0,12 кДж/моль.

Поскольку, для хрома H_s =397 кДж/моль [53] и d=2,5 Å, а для графита H_s =712 кДж/моль [53] и d=1,42 Å (длина связи при sp^2 - гибридизации), то произведение $H_s \cdot d$ для хрома и углерода практически одинаково. Из зависимости U (табл.26) видно, что запасённая в свободной поверхности энергия весьма мала в масштабах теплот карбидообразования.

Удельная поверхность для смеси нескольких компонентов с весовыми долями $P_i\left(\sum_i P_i = 1\right)$, плотностями ρ_i и диаметрами сферических частиц D_i

равна

$$S_{yg} = \sum_{i} \frac{P_i \cdot \pi \cdot D_i^2}{\rho_i \cdot \frac{\pi}{6} \cdot D_i^3} = 6 \cdot \sum_{i} \frac{P_i}{\rho_i \cdot D_i} = \sum_{i} S_{yg}^{(i)} \cdot p_i \, \text{, figh} \, S_{yg}^{(i)} = \frac{6}{\rho_i \cdot D_i}$$

В данном случае весовые доли хрома и углерода равны соответственно $P_{cr} = 0,867$ и $P_c = 0,133$, так что для исходной смеси $S_{y\partial} = 0,14 \cdot P_{cr} + 8,40 \cdot P_c = 1,24$ м²/г, что практически совпадает с экспериментальным значением $S_{y\partial} = 1,25 \text{ m}^2/\Gamma_1$

При помоле исходные частицы хрома и сажи измельчаются, а кроме того, к ним добавляется 3-й компонент – агрегированные частицы Cr-C,

состоящие из перемежающихся слоёв Cr и C. Если принять, что состав этих частиц не отличается от состава смеси, или исходной шихты, то плотность этих частиц $\rho_3 = 5,58$ г/см³.

Отсюда для 3-х компонентной смеси получим

$$S_{\rm yg} = (1-x) \cdot \left(\frac{0,724}{D_1} + \frac{0,352}{D_2} \right) + x \cdot \frac{1,075}{D_3},$$

где x – весовая доля агрегированных частиц, D_3 их диаметр, D_1 и D_2 – диаметры частиц свободных хрома и углерода (S_{yo} – в м²/г, D_i – в мкм).

Графит в мельницах может быть измельчён до удельной поверхности ~500 м²/г [70], что соответствует диаметру частиц 35-40Å и запасённой энергии свободной поверхности ~30 кДж/моль. В связи с этим графит используется как тест – объект при экспериментальном определении энергонапряжённости мельниц. В действительности, форма частиц графита далека от сферической из-за наличия плоскости легчайшего скола (001). В нашем случае, достижению предела измельчения сажи, то есть удельной поверхности ~500 м²/г, препятствует «инкапсулирование» углерода в агрегированных слоистых частицах. Тем не менее, видимо, до времени помола в 21 мин, удельная поверхность смеси в основном растёт за счёт измельчения частиц свободного углерода, т.е. уменьшения D₂, поскольку сажа (аморфный графит) является самым мягким и легкодеформируемым компонентом смеси. Можно предположить, что и размер частиц свободного хрома D_1 со временем помола уменьшается, хотя и не так быстро как D_2 . Весовая доля агрегированных частиц х растёт со временем помола, приближаясь к 1. Что же касается поперечника частиц-конгломератов D_3 , то его зависимость от времени помола носит сложный характер. Как было показано Морисом и Кортни [71] на основе рассмотрения теоретической модели механосплавления двух пластичных компонентов, размер образованной ими слоистой частицы меняется со временем помола подобно одному периоду синусоиды. Происходит это из-за того, что средний размер

частиц формируется на основе динамического равновесия двух, идущих в противоположных направлениях процессов, – растрескивания этих частиц и нового сваривания их обломков, тогда как склонности к тому и другому меняются с наклёпом. Растрескивание будет сопровождаться высвобождением мелких графитовых частиц, находившихся в прослойке между слоями хрома. Вероятно, этим, отчасти, объясняется немонотонная зависимость удельной поверхности. Другая причина немонотонности может быть связана с тем, что данные по S_{уд} относятся не к одному образцу, а к нескольким, каждый из которых активировался заново и дискретно.

Например, помол в течение 36 мин не был добавлением трёх минут к помолу продолжительностью 33 мин, а осуществлялся заново. Многие же процессы в мельнице (в том числе налипание порошка на стенки барабана и последующее их удаление «сход лавины») носят случайный и невоспроизводимый от раза к разу характер.

Поскольку, по данным электронной микроскопии даже толщина пластины хрома в слоистой структуре не уменьшается менее ~ 200нм, можно сделать вывод, что удельная поверхность в основном формируется не слоистыми частицами, а присутствующим в смеси мелким свободным углеродом.

Так как удельная поверхность измельченного графита может быть очень большой, то даже незначительные колебания его содержания в смеси приведут к большим флуктуациям средней удельной поверхности.

Скачки удельной поверхности смеси Cr-C при механоактивации могут быть связаны с периодическим разрушением слоистых частиц и высвобождением запечатанной в них сажи.

Сравнительный анализ данных РФА и тепловыделений шихт Cr-C после механоактивации и высокоскоростной термообработки в интервале

времен помола 30-43 мин с теми же шихтами, хранившимся в течение 18 месяцев (табл.27), показал, что запасённая энергия и характеристики активированной шихты почти полностью сохраняются в течение длительного периода времени. На поверхности механообработанной шихты Cr-C в процессе хранения в течение 18 месяцев образуется дополнительное количество оксида хрома Cr_2O_3 (до 2,5% от массы шихты). При этом, основное окисление шихты (до 7% от её массы) происходит при вскрытии барабана.

В свободном объёме барабана ~225см³ содержится ~0,032г кислорода, которого достаточно лишь для образования ~0,10г оксида хрома Cr_2O_3 , т.е. ~1% от массы шихты 10г. Адсорбированный исходными реагентами кислород составлял лишь доли процента по массе. Рентгеновский фазовый анализ не выявил существенных различий в содержании Cr_2O_3 до и после нагрева до 1000°С.

Таблица 27. Фазовый состав и тепловыделение механически активированной и отожжённой шихты Cr-C (исходной и после 18 месяцев хранения) (соотношение ш:м = 200:10)

тельность ии, мин.	ни Кодержание фаз, %					Тепловыделение при ДТА, кДж/г шихты		% потери тепла при ЛТА	
цолжи тиваци	Cr	$_{3}C_{2}$	Cr	₇ C ₃	Cr	$_{2}O_{3}$		ДШ	
lpo, ar	Исходная	После 18	Исходная	После 18	Исходная	После 18	Исходная	после 18	После 18
	шихта	месяцев	шихта	месяцев	шихта	месяцев	шихта	месяцев	месяцев
30	78,1	76,4	14,9	14,1	7,0	9,5	1,81	1,76	2,8
36	74,5	74,4	20,4	19,7	5,1	5,9	1,30	1,25	3,8
40	80,6	*	15,6	*	3,8	*	1,24	1,21	2,4
43	79,2	77,3	17,6	18,5	3,2	4,2	0,97	0,94	3,1

*-РФА шихты Cr-C после ДТА не проводился.

Теплота образования карбида хрома Cr₃C₂ составляет –0,50кДж/г (–90кДж на моль массой 180г) [53]. Следует отметить, что оценка тепловых эффектов производилась полуколичественным методом. Поэтому данные таблицы 1 не вполне точно отражают абсолютные количества тепловыделений, а передают их тенденцию.

 Cr_3C_2 Количество Cr-C карбида хрома В системе после механоактивации и нагрева до 1000°С в зависимости от продолжительности активации, начиная с длительности помола 27-30 мин, достигает ~ 80%. Это связано с натиранием железа от мелющих тел и стенок барабана после начала карбидов. образования твёрдых При этом, по данным рентгенофлюоресцентного химического анализа, намолот железа происходит лавинообразно при ~30 мин помола, достигая атомной пропорции Fe:Cr≈1:10, которая с дальнейшим увеличением времени помола подрастает слабо. Вероятно, это происходит из-за образования защитного карбидосодержащего покрытия на шарах и стенках барабана. Такое количество железа перекрывает уход 5-7% хрома в оксид хрома Cr₂O₃. В результате, состав шихты отклоняется от исходного Me_3C_2 , где Me=(Cr,Fe), в сторону $Me_{3+x}C_2$, так что наряду с карбидом Me_3C_2 присутствует до 20% Me_7C_3 или $Me_{4.67}C_2$, откуда х ≈0,33.

3.8. Поисковые эксперименты по СВС-компактированию

Образцы (Cr-Ti-C) получали по технологии силового CBCкомпактирования [72,73], которая основана на последовательном проведении процесса CBC и прессовании горячих продуктов синтеза. В качестве исходных компонентов CBC - шихты использовались порошки титана, хрома, сажи, характеристики которых представлены в табл. 28.

		Удельная	Средний	
N/	Материал Марка порошка		размер	
материал			частиц,	
			МКМ	
Turney (Ti)	$\Pi TC (TV14, 1, 2096, 90, max, 1, 2)$	0.02	15	
Титан (11)	ППС (ТУ14-1-5080-80 ИЗМ. 1-5)	0,03	43	
Углерод		1.5	0.0	
технический (С)	118041 (19 38-1154-88)	15	0,2	
Хром (Cr)	ПХ-1С (ГОСТ 5905-79)	0,01	63	

Таблица 28. Характеристики используемых порошков

Перед смешением исходные порошки подвергали сушке при температуре 90°С в течение 6 ч. Все компоненты вводили в исходную шихту в соотношениях, указанных в табл. 29, 30. Шихту готовили в планетарной мельнице ЛАИР 0.015. Прессование шихтовых брикетов осуществляли в цилиндрической пресс-форме диаметром 48 мм. Давление прессования составляло 10 МПа. Относительная плотность брикетов находилась в пределах 55-60%.

Синтез проводили в реакционной пресс-форме на гидравлическом прессе марки ДА-1532Б. В качестве среды, передающей давление, 0,2-0,8 использовалась просушенная фракция речного песка MM. Инициирование процесса горения осуществляли пропусканием П-образную вольфрамовой электрического через «спираль» тока ИЗ

проволоки диаметром 0,4 мм. Момент завершения распространения волны горения определяли с помощью фотодиода, установленного в реакционной пресс-форме с противоположной стороны от инициирующей «спирали». Для передачи излучения от образца на фотодиод использовали световод в виде прямоугольной стеклянной пластинки, располагаемой в слое песка между образцом и стенкой пресс-формы с отверстием фотодиода. После завершения горения с задержкой в 1 секунду к горячим продуктам синтеза прикладывалось давление 20 МПа. Время выдержки под давлением составляло 10 сек. По окончании процесса силового СВС-компактирования пресс-форма разгружалась. Охлаждение продуктов синтеза до комнатной температуры проводили в песчаной засыпке.

Методом CBC-компактирования опробовано изготовление мишеней для магнетронного напыления защитных покрытий методом из смесей, % по массе: Cr : Ti : C = 50 : 34 : 16 (τ_{akt} =24 мин);Cr : Ti : C = 65 : 20 : 15; (τ_{akt} =24, 27, 30 мин,), что являлось практическим применением описанных выше исследований по механоактивации двойной смеси.

Фазовые составы указанных выше смесей после механоактивации приведены в табл. 29, 30.

Таблица 29. Фазовый состав механически активированной шихты

Cr-Ti-C (50 : 34 :16%) (соотношение ш:м = 800:40) с учётом свободного углерода

Продолжительность	Содержание фаз, %			
активации (т _{акт}), мин.	Cr	Ti	С	
24	52,8	30,3	16,9	

	Соотношение	Содержание фаз, %				
$ au_{a\kappa au}$, МИН.	Ш:М	Cr	Cr ₇ C ₃	Ti	TiC	C
24	800:40	67,0	0	17,5	0	15,5
27	600:30	64,2	0	13,6	9,3	12,9
30	600:30	52,9	12,4	11,1	12,4	11,2

Таблица 30. Фазовый состав механически активированной шихты

Cr-Ti-C(65: 20:15%) с учётом свободного углерода

Мишень для магнетронного напыления защитных покрытий методом CBC-компактирования (фазовый состав приведён в табл. 31) получена только из смеси Cr :Ti :C = 50 : 34 : 16 после τ_{akt} =24 мин и соотношении ш : м = 800 : 40. Это можно объяснить тем, что только в этом случае при механоактивации не образуются карбиды Cr₃C₂, Cr₇C₃, Cr₂₃C₆ и карбид TiC.

Таблица 31. Фазовый состав мишени

Содержание фаз, %					
Cr ₃ C ₂	TiN _{0,7} C _{0,3}	TiC	С		
50,2	29,2	18,8	1,8		

При CBC-компактировании температура поджигания изделия из указанной смеси Cr-Ti-C достаточна для диффузии углерода в хром и титан, и азота в титан с образованием высшего карбида хрома Cr_3C_2 , карбонитрида титана TiN_{0.7}C_{0.3} и карбида титана TiC. При отсутствии карбидов хрома и титана не требуется дополнительных энергетических затрат для CBC-компактирования изделия из смеси Cr-Ti-C. При этом тепловыделения за счёт экзотермических реакций образования конечного соединения – высшего карбида хрома Cr_3C_2 и карбида титана TiC достаточно для распространения взаимодействия компонентов смеси Cr-Ti-C по всему объёму заготовки мишени.

Практический результат работы состоит в нанесении высшего карбида хрома Cr₃C₂ электроискровым методом, с применением предварительной механоактивации смеси порошков хрома с углеродом и последующей высокотемпературной обработкой, на внутреннюю поверхность трубы сливного устройства ковша для разливки агрессивного расплава с температурой 1650°C с целью повышения износо- и жаростойкости поверхностного слоя трубы.

Срок службы трубы с нанесённым на внутреннюю поверхность покрытием карбида хрома Cr_3C_2 стехиометрического состава увеличен на ~30% (Акт прилагается).

Выводы

1. Выяснен механизм карбидообразования в системе хром-углерод как в процессе механоактивации, так и после предварительной механоактивации, при последующем высокотемпературном синтезе.

2. Методами рентгеновской диффрактометрии И сканирующей электронной микроскопии и измерением удельной поверхности порошков методом БЭТ изучены продукты механохимической обработки В высокоэнергетической планетарной шаровой мельнице смесей порошков углерода и хрома при различной длительности и массовом соотношении смеси и мелющих тел. С увеличением длительности помола удельная поверхность растёт от ~1 до 10 м²/г, предположительно, из-за решающего вклада сажи, которая периодически запечатывается в «капсулы» ИЗ металлического порошка и высвобождается из них в процессе измельчения и карбидообразования.

3. С помощью растровых микрофотографий поперечных срезов (шлифов) порошка вплоть до 30 мин помола обнаружены удлинённые частицы хрома в окружении сажи. Образования ламинарной структуры, или «рулета», не происходит из-за большой разницы в твёрдости исходных компонентов. Частицы хрома измельчались с увеличением длительности помола, так как не при всех соударениях шаров сажа выступала в роли амортизатора.

4. Карбидообразование 30 начинается спустя МИН после начала измельчения при соотношении шары – исходная смесь углерода и хрома 20:1 по массе, а спустя 33 мин в продуктах обнаруживаются карбиды $Cr_{23}C_6$, Cr₃C₂, с доминированием промежуточного Cr₇C₃ и карбида Cr_7C_3 . Инкубационный период превращения в 30 мин и наличие всех диаграммных карбидов хорошо укладываются в рамки модели образования карбидов по механизму реакционной диффузии, когда более подвижный углерод диффундирует в хром через многослойный (в данном случае 3-х слойный)

карбидов, сандвич различных с постепенно увеличивающимся ИЗ содержанием Cr, причём, толщина всех прослоек сандвича растёт со временем. После 30 мин помола происходит утонение некоторых частиц Cr до 300нм, что совпадает с диффузионным путём С в Cr. Преимущественное образование промежуточного карбида Cr₇C₃ на ранних стадиях процесса механосплавления, когда исходные реагенты – хром и сажа далеки от более диффузионной исчерпания, вероятно, связано высокой С подвижностью углерода в этом карбиде.

5. При длительности измельчения больше 33 мин. (после реагирования углерода с хромом на ~40%) с помощью микрофотографий обнаружена хорошо известная структура «рулетов», состоящих из чередующихся слоёв белых частиц хрома и более серых (в зависимости от содержания в них углерода) разнотипных карбидов вплоть до чёрных прослоек остаточной сажи. Толщины прослоек различных компонентов в «рулете» составляет 100-300нм.

6. Максимальное тепловыделение, связанное с карбидообразованием при высокоскоростном (~ 200 К/мин) нагреве до 1000^{0} С зафиксировано после 30мин помола, когда достигалось наибольшее измельчение и перемешивание исходных компонентов смеси (максимальная межфазная поверхность и утонение слоёв). Смеси с меньшей длительностью помола (τ) не успевали при быстром нагреве прореагировать до конца из-за больших путей диффузии. При $\tau \geq 30$ мин начинался процесс карбидообразования.

7. Показано, что при помоле чистого хрома максимальная запасаемая в дефектах решётки энергия составляет ~0,02 кДж/г или 1 кДж/моль, что характерно для металлов. В графите при удельной поверхности 500 м²/г запасается до 30 кДж/моль. При помоле смесей хрома и графита большая энергия может выделяться лишь в процессе химического взаимодействия хрома с углеродом с образованием карбидов хрома.

8. Для исключения натирания железа из-за износа шаров и футеровки и загрязнения карбида хрома карбидами железа (Fe_3C_2 и Fe_7C_3) необходимо и шары и футеровку изготавливать из хрома, а для исключения загрязнения конечного продукта кислородом измельчение исходной смеси проводить в среде аргона. Это обеспечит получение высшего карбида хрома стехиометрического состава.

9. Практический результат работы состоит в том, что существенно сокращается длительность синтеза высшего карбида хрома, снижается температура начала карбидообразования, упрощается аппаратурное оформление процесса, а получаемый карбид, близкий к стехиометрическому составу, обеспечивает лучшие свойства твердых сплавов на его основе, в частности – повышение прочности, абразивной и коррозионной стойкости.

Список использованных источников

1. Хансен М. и Андерко К. Структура двойных сплавов. Металлургиздат, 1962, 627 с.

2. Гельд П.В. и Есин О.А. Процессы высокотемпературного восстановления. Металлургиздат, 1957, 646 с.

3. Есин О.А и Гельд П.В. Физическая химия пирометаллургических процессов. Металлургиздат, 1962, 671 с.

4. Григорьева В.В. и Клименко В.Н. Свойства карбидов хрома и металлокерамических сплавов на их основе. Исследования жаропрочных сплавов, т. IV. Изд. АН СССР, М., 1959, с. 79-82.

5. Елютин В.П. и др. Производство ферросплавов. Металлургиздат, 1957, 350 с.

6. Smith W.H. Trans. AIME, 1957, v. 209, p. 47-49.

7. Болгар А.С., Турчанин А.Г., Фесенко В.В. Термодинамические свойства карбидов. Киев: Наук. Думка, 1973, 271 с.

8. Кубашевский О., Олкокк К.Б. Металлургическая термохимия: Пер. с англ.М.: Металлургия, 1982, 392 с.

9. Алексеев В.И., Шварцман Л.А. Термодинамика некоторых простых и смешанных карбидов переходных металлов // Проблемы металловедения и физики металлов. М.: Металлургия, 1964. Вып. 8, с. 281-304.

10.Maluchi H., Sano N., Matsushita Y. The standard free energy of formation of Cr_3C_2 by the electromotive force method // Met. Trans.1971.V.2. P. 1503-1506.

11.Berkane R., Gachon J.C., Charles J., Hortz J. A thermodynamic study of the chromium – carbon system // CALPHAD. 1987. V.11.№ 2.P. 152 - 159.

12.Kaufman L., Nesor H. Coupled phase diagrams and thermochemical data for transition metal binary systems IV // CALPHAD. 1978. № 2. P. 295 - 318.

13.Shatynski Stephen R. Thermochemistry of transition metal carbides // Oxidation of Metals. April 1979.V.3. № 2. P. 105 - 118.

14. Celtters R.G., Belton G.R. High temperature thermodynamic properties of the chromium carbides Cr_7C_3 and Cr_3C_2 determined using a galvanic cell technique // Met. Trans. B.1985.V.15.No 1 - 4.P. 517 - 521.

15. Heusler O. Z. Anorg. Chem., 1926, B. 154, S. 353-373.

16. Самсонов Г.В., Уманский Я.С. Твёрдые соединения тугоплавких металлов. Металлургиздат, 1957, 388 с.

17. Киффер Р., Шварцкопф П. Твёрдые сплавы. Металлургиздат, 1957, 664 с.

18. Ито, Фурукава дэнко дзихо, 1956, № 13, с. 15-20, (РЖМ, 1958, №5, реф.
9424).

19. Cech B., Hutnicke Listy, 1958, v. 13, № 2, p.113-123.

20. Cech B., Hutnicke Listy, 1958, v. 13, № 10, p.955-960.

21. Косолапова Т.Я., Самсонов Г.В. ЖПХ, 1959, т. ХХХІІ, № 1, с.55-60.

22. Косолапова Т.Я., Самсонов Г.В. ЖПХ, 1959, т. ХХХІІ, № 7, с.1505-1509.

23. Самсонов Г.В., Косолапова Т.Я. Порошковая металлургия в машиностроении и приборостроении. Киев. Изд. НТО Машпром, 1961, с.28-35.

24. Косолапова Т.Я., Самсонов Г.В. ЖПХ, 1960, т. ХХХІІ, № 8, с.1704-1708.

25. Косолапова Т.Я., Самсонов Г.В. ДАН УССР, 1959, № 3, с. 298-300.

26. Самарин А.М., Вертман А.А. Труды Института металлургии им. А.А.Байкова, Изд-во АН СССР, 1957, вып. 1, с. 60-66.

27. Вертман А.А., Самарин А.М. Труды совещания по применению вакуума в металлургии, 1958, с. 132-146.

28. Есин О.А и Гельд П.В. ЖПХ, 1958, т. ХХХІ, вып.9, с. 1285-1293.

- 29. Kelley K. K. a. o. Technical paper, 1944, № 662, p. 6-43.
- 30. Friederich E., Sittig L. Z. anorg. Chem., 1925, B. 144, S. 169-189.
- 31. Ruff O., Foehr T. Z. anorg. Chem., 1918, B. 104, S. 27-46.
- 32. Kraiczek B., Sauerwald F. Z. anorg. Chem., 1930, B. 185, S. 193-216.
- 33. Friemann E., Sauerwald F. Z. anorg. Chem., 1932, B. 203, S. 64-70.
- 34. Campbell I.E.a. o. Trans. Electrochem. Soc., 1949, v. 96, № 5, p. 318-333.
- 35. Owen B., Webber R. Trans. AIME, 1948, v. 175, p. 693-698.
- 36. Архаров В.И., Конев В.Н. Вестник машиностроения, 1955, т.11, с.55-57.
- 37. Конев В.Н. Исследования по жаропрочным сплавам, 1958, т.3, с. 415-419.
- 38. Arnold J.O., Read A.A.J. Iron Steel Inst., 1911, v. LXXXIII, p. 249-260.
- 39. Grafts W., Lamont J. Trans. AIME, 1949, v. 180, p. 471-512.
- 40. Wever F., Koch W. Arch. Eisenhüttenwes., 1950, B. 21, № 5-6, S. 143-152.
- 41. Brown J., Clark D. Nature, 1951, v. 167, № 4253, p. 728.
- 42. Федорченко И. М., Май В. К. Порошковая металлургия, 1961, № 2, с. 70-75.
- 43. Ogden H. R. a. o. Trans. Metallurg. Soc. AIME, 1963, v. 227, p.1458-1460.

44. Григорьева В.В. и др. Технология изготовления и области применения карбидохромовых сплавов. ЦИТЭИН, 1960, № М – 60 – 207/3, 26 с.

45. News Digest.What's Ahead in Alloy Castings. Materials and Methods, 1953, v. 38, №1,p. 166-170.

46. Григорьева В.В., Клименко В.М. Сплавы на основе карбида хрома. Изд-во АН УССР, Киев, 1961, 56 с.

47. Bacchella G. L. a. o. Bull. Soc. franç. Miner. Crist., 1966, v. LXXXIX, №2, p. 226-228.

48. Газиев Г.А. и др. ДАН СССР, 1961, т. 140, № 4, с. 863-866.

49. Самсонов Г.В. и др. « Электротехнические металлокерамические изделия». ВНИИЭМ, 1965, с. 136-141.

50. Ермилов А.Г., Сафонов В.В., Дорошко Л.Ф., Колякин А.В. // Изв. вузов. Цв. металлургия. 2000. № 6. С. 55-60.

51. Дьяконова Н.П., Шелехов Е.В., Свиридова Т.А., Скаков Ю.А. // Тр. Нац. конф. по применению рентгеновского, синхротронного излучений, нейтронов и электронов для исследования материалов. Дубна: ОИЯИ, 1997. Т.2. С. 31-36.

52. Шелехов Е.В., Свиридова Т.А., Дьяконова Н.П., Резников А.А. // Заводская лаборатория. 1997. Т.63, № 10. С. 17-24.

- 53. Смитлз К.Дж. Металлы: Справочник. М.: Металлургия, 1980, 447 с.
- 54. de Keijser Th.H., Langford J.I., Mittermeijer E.J. and Vogels A.B.P. J. Appl. Cryst., 15, №3, p. 308-314 (1982).
- 55. Селиванов В.Н., Смыслов Е.Ф. // Заводская лаборатория, №7, с. 28-29 (1991).
- 56. Горелик С.С., Расторгуев Л.Н., Скаков Ю.А. Рентгенографический и электроннооптический анализ. М.: Металлургия, 1970, 366 с.

57. *Maurice D., Courtney T.H.* // Metall. Trans. A. 1995. Vol. 26A, № 9, P. 2437-2444.

- 58. Свойства, получение и применение тугоплавких соединений: Справочник / Под ред. Косолаповой Т.Я. М.: Металлургия, 1986, 928 с.
- 59.Шелехов Е.В., Свиридова Т.А. // Материаловедение. 1999. № 10. С. 13-22.
- 60. *Каур И., Густ В.* Диффузия по границам зёрен и фаз / Пер. с англ. М.: Машиностроение, 1991, 448 с.

61. Бокштейн Б.С. Диффузия в металлах. М.: Металлургия, 1978, 248 с.

62. Е.В.Шелехов, Т.А.Свиридова. // Материаловедение, 2007, № 9, с.13-19.

63. *Свиридова Т.А., Шевчуков А.П., Шелехов Е.В., Борисова П.А.* // Физика металлов и металловедение. 2011. Т. 112, № 4. С. 378–392.

64.Е.В.Шелехов, Т.А.Свиридова. // Материаловедение, 2007, № 10, с.13-22.

65.Е.В.Шелехов, Т.А.Свиридова. // Материаловедение, 2007, № 11, с.13-20.

66.Е.В.Шелехов, Т.А.Свиридова. // Материаловедение, 2007, № 12, с.10-24.

67.Е.В.Шелехов, Т.А.Свиридова. // Материаловедение, 2008, № 2, с.10-22.

68.Е.В.Шелехов, Т.А.Свиридова. // Материаловедение, 2008, № 3, с.11-24.

69.Е.В.Шелехов, Т.А.Свиридова. // Материаловедение, 2008, № 4, с.16-23.

70. Streletskii A.N. Measurements and Calculation of Main Parameters of Powder Mechanical Treatment in Different Mills // Mechanical Alloying for structural applications. Proc. 2nd Int. Conf. of Mechanical Alloying (20–22 September) Vancouver, 1993, P. 51–58.

71. *Maurice D., Courtney T.H.* // Metall. Trans. A. 1995. Vol. 26A, № 9, P. 2431-2435.

72. Самораспространяющийся высокотемпературный синтез: теория и практика / Под ред. Сычёва А.Е., Черноголовка: «Территория», 2001, 432 с.

73. Левашов Е.А., Рогачёв А.С., Юхвид В.И., Боровинская И.П. Физикохимические и технологические основы самораспространяющегося высокотемпературного синтеза. М.: БИНОМ, 1999, 176 с.

«Утверждаю» Первый заместитель директора ООО «Интермикс Мет» Н.И. Борисов AK

полупромышленных испытаний высшего карбида хрома Cr₃C₂ в качестве покрытия

В период с 01.09.2014 года по 23.10.2014 года на предприятии ООО «Интермикс Мет» проведены испытания по нанесению высшего карбида хрома Cr₃C₂ на внутреннюю поверхность трубы сливного устройства ковша для разливки агрессивного расплава с температурой 1650°С. Покрытие было нанесено электроискровым методом с целью повышения износо- и жаростойкости поверхностного слоя трубы с использованием в качестве электрода карбида хрома Cr₃C₂, полученного в НИТУ «МИСиС» с применением предварительной механоактивации смеси порошков хрома с углеродом и последующей высокотемпературной обработкой.

Покрытие нанесено с использованием установки «ALIER-303 METAL». Перед нанесением покрытия внутренняя поверхность обрабатываемой поверхности трубы была тщательно протёрта тканью, смоченной в изопропиловом спирте (ГОСТ 9805).

Толщина нанесённого покрытия составила 50 мкм при частоте импульсных разрядов 2500 Гц. В течение 1 мин карбидом хрома было покрыто 5 см² при количестве импульсных разрядов ~150000.

Срок службы трубы с нанесённым на внутреннюю поверхность покрытием карбида хрома Cr_3C_2 стехиометрического состава увеличен на ~30%.

От ООО «Интермикс Мет»

Главный инженер В.Б.Коряков

От НИТУ «МИСиС» проф. А.С. Медведев инженер О.Н. Приписнов