На правах рукописи

РОСЛЯКОВ СЕРГЕЙ ИГОРЕВИЧ

ПОЛУЧЕНИЕ НАНОКРИСТАЛЛИЧЕСКИХ ПОРОШКОВ Ni и Fe2O3 МЕТОДОМ СВС В РАСТВОРАХ И ИССЛЕДОВАНИЕ ИХ КАТАЛИТИЧЕСКИХ И МАГНИТНЫХ СВОЙСТВ

Специальность 05.16.06 – Порошковая металлургия и композиционные материалы

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата технических наук

Москва 2016

Работа выполнена в Федеральном государственном автономном образовательном учреждении высшего образования «Национальный исследовательский технологический университет «МИСиС» (НИТУ «МИСиС»)

Научный руководитель:	Мукасьян Александр Сергеевич доктор физико-математических наук, профессор
Официальные оппоненты:	JONTOD TEXHNUECKUX HAVK IDODECCOD
Андриевский Ростислав Александрович	Федеральное государственное бюджетное учреждение науки Институт проблем химической физики Российской академии наук, г. Черноголовка главный научный сотрудник отдела функциональных неорганических материалов
Баринова Татьяна Валерьяновна	кандидат химических наук, Федеральное государственное бюджетное учреждение науки Институт структурной макрокинетики и проблем материаловедения Российской академии наук, г. Черноголовка старший научный сотрудник лаборатории СВС ИСМАН
Ведущая организация	Федеральное государственное бюджетное учреждение науки Институт химической физики им. Н.Н.Семенова Российской академии наук, г.

Защита диссертации состоится «07» октября 2016 года в 14-00 в аудитории К-212 на заседании диссертационного совета Д 212.132.05 при НИТУ «МИСиС» по адресу: г. Москва, ул. Крымский вал, д.3.

Москва

С диссертацией можно ознакомиться в библиотеке НИТУ «МИСиС» и на сайте http://www.misis.ru.

Отзывы на автореферат направлять по адресу: 119049, г. Москва, Ленинский проспект, 4, НИТУ «МИСиС», ученому секретарю диссертационного совета Лобовой Т.А.

Автореферат разослан «01» июля 2016 г.

Ученый секретарь диссертационного совета

lob h

Т.А. Лобова

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы

Актуальность работы связана с общей проблемой получения нанопорошков и изделий на их основе, обладающих уникальным комплексом свойств и предназначенных для использования в различных областях науки и техники, в том числе в энергетике. Создание новых источников энергии является важнейшей задачей современности, прежде всего обусловленной быстрым увеличением потребления энергии в мире в связи с бурным мировым экономическим развитием, поэтому ученые всего мира заняты разработкой новых эффективных источников преобразования и хранения энергии, таких как топливные и солнечные элементы, суперконденсаторы и батареи. Таким образом, синтез нанопорошков с высокой удельной поверхностью представляет интерес с позиции их каталитической активности, а ультрадисперсных (меньше 10 нм) – с точки зрения их магнитных характеристик. Важнейшими параметрами, непосредственно влияющими на каталитическую активность и стабильность, являются размер частиц активной фазы, удельная поверхность катализатора и распределение металла на поверхности носителя. Уменьшение размеров частиц в магнитных материалах приводит к значительным изменениям таких характеристик как коэрцитивная сила, остаточная намагниченность и магнитная восприимчивость. Размер частиц существенно зависит от условий процесса синтеза.

Большинство методов получения порошков либо не позволяют получать конечный материал с высокой удельной поверхностью и требуемого наноразмера, либо требуют высоких энергозатрат и наличия специального сложного оборудования.

Бурно развивающимся альтернативным способом синтеза наноматериалов является «горение растворов» (самораспространяющийся высокотемпературный синтез в растворах), который на самоподдерживающейся экзотермической реакции взаимодействия основан компонентов на основе систем, содержащих окислитель (нитрат металла) и восстановитель (растворимые в воде линейные и циклические органические амины, кислоты и аминокислоты). Основным различием между синтезом «горение растворов» И «классическим» самораспространяющимся высокотемпературным синтезом (СВС) является состояние исходной реакционной среды. Если для СВС обычно используются смеси твердофазных порошков и масштаб гетерогенности реакционной смеси обусловливается размером частиц, что обычно составляет 1-100 мкм, то в растворах реагенты смешаны на молекулярном уровне, кроме того выделение большого количества газов при взаимодействии реагентов в волне горения облегчает формирование нанопорошков. Однако, несмотря на множество материалов (в основном на основе оксидов), полученных синтезом «горение растворов», механизм формирования твердофазного продукта во фронте волны горения недостаточно изучен и является важной фундаментальной задачей. Развитие

физико-химических основ процесса горения в растворах различных реакционных систем позволит управлять функциональными свойствами порошковых материалов.

Актуальность работы подтверждается выполнением ее в рамках следующих проектов:

- государственный контракт № 14.А18.21.1944 от 14 ноября 2012 г. «Наноструктурные керамические материалы» в рамках реализации ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009–2013 годы, проводимых коллективами под руководством приглашенных исследователей по научному направлению «Индустрия наносистем»;

- грант НИТУ «МИСиС» № К2-2014-001 на государственную поддержку реализации Программы повышения конкурентоспособности среди ведущих мировых научно-образовательных центров исследований для проведения научного исследования по направлению: «Керамические конструкционные наноматериалы; Металлические катализаторы; Реакционные нанофольги; Соединение тугоплавких и разнородных материалов»;

- проект РФФИ № 15-53-04066 от 13 мая 2015 г. «Разработка новых бестемплатных методов синтеза керамических, металлических и металлокерамических материалов различной морфологии».

Цель работы

Осуществление синтеза горением в растворах нанокристаллических порошков Ni, в том числе на высокопористом носителе SiO₂ для создания высокоактивного и стабильного катализатора производства водорода, а также нанокристаллического порошка Fe₂O₃ с высокой магнитной восприимчивостью.

Для достижения поставленной цели решались следующие задачи:

- исследование закономерностей влияния соотношения восстановитель/окислитель (φ) в растворах на основе систем Ni(NO₃)₂-H₅NC₂O₂ и Fe(NO₃)₃-H₅NC₂O₂ на фазовый состав и микроструктуру продуктов, образующихся в процессе CBC в растворах;

- исследование динамики фазообразования твердых и газовых продуктов во фронте волны горения системы Ni(NO₃)₂-H₅NC₂O₂ для установления механизма формирования твердофазного продукта;

- исследование влияния условий проведения синтеза в растворах на фазовый состав продуктов горения систем Ni(NO₃)₂-H₅NC₂O₂ и Fe(NO₃)₃-H₅NC₂O₂, импрегнированных в высокодисперсный носитель SiO₂, в том числе с заданной канальной структурой;

- исследование каталитических и магнитных свойств, полученных порошков Ni и Fe₂O₃.

Научная новизна работы

1. На основании термодинамических и экспериментальных исследований взаимодействия компонентов в системах нитрат металла-глицин определены равновесные концентрации Me/MeO в зависимости от значений коэффициента φ (0,75-1,75) и показано, что для

систем на основе нитратов никеля, меди и кобальта преимущественное формирование металлической фазы происходит при φ≥1,25.

2. На основании данных комплексного анализа (ДРФА, ТГА-ДСК-МС) фазовых превращений, происходящих при химическом взаимодействия компонентов в системе $Ni(NO_3)_2 - H_5NC_2O_2$ при горении в растворах (ϕ =0,75-1,75), предложен механизм формирования нанопорошка никеля, заключающийся в том, что при инициировании процесса горения (T~250 °C) одновременно протекают реакции разложения нитрата никеля и глицина с образованием твердофазных NiO, дипептида и 2,5-пиперазиндиона, а также газообразных продуктов N₂O и NH₃, взаимодействующих между собой с высоким экзотермическим эффектом, тепла которого становится достаточно для протекания самоподдерживающейся химической реакции. При T>450 °C происходит разложение дипептида и 2,5-пиперазиндиона с образованием избыточного количества NH₃, что приводит к полному восстановлению NiO до металлического Ni.

3. Установлен эффект роста каталитической стабильности Ni катализатора, полученного импрегнированием раствора Ni(NO₃)₂ - H₅NC₂O₂ в инертный высокодисперсный носитель SiO₂, который обусловлен тем, что при осуществлении синтеза в атмосфере инертного газа при P_{Ar}≥0,5 MПа и концентрации кислорода <0,001% масс., происходит пассивация наночастиц никеля с образованием тонкого аморфного слоя оксида никеля, что блокирует их дальнейшее окисление.

4. Показано, что намагниченность синтезированных ультрамелкозернистых порошков α-Fe₂O₃ в присутствии магнитного поля достигает значений 21 эме/г при 300 К, что существенно выше, чем у аналогичных порошков, полученных методами химического осаждения и термообработки.

Практическая значимость работы

1. Разработан одностадийный способ получения Ni катализатора с высокой удельной поверхностью (155 M^2/Γ), путем CBC раствора Ni(NO₃)₂ - H₅NC₂O₂, импрегнированного в высокодисперсный носитель SiO₂. Проведены стендовые испытания катализатора из нанокристаллического порошка Ni на носителе SiO₂ в реакции разложения этанола с целью получения водорода. Результаты сравнительных испытаний разработанного катализатора с традиционно используемыми показали, что по стабильности он превосходит известные катализаторы в 1,5-3 раза, при этом срок эксплуатации увеличивается на 67%. Высокие активность и селективность полученного катализатора в реакции разложения этанола с получением водорода при низкой температуре (200 °C) позволяют рекомендовать его для промышленного использования, в том числе замены дорогостоящих импортных катализаторов.

2. Разработан способ получения α-Fe₂O₃ CBC раствора Fe(NO₃)₃-H₅NC₂O₂ импрегнированного в матрицу SiO₂ с заданной канальной структурой, которая препятствует росту

частиц в процессе синтеза, что способствует получению ультратонких порошков с узким фракционным составом (95% частиц размером менее 5 нм).

3. Проведены стендовые испытания магнитных свойств нанопорошка α-Fe₂O₃ со средним размером частиц 3,5 нм в сравнении с порошками, синтезируемыми гидротермальными методами, включающими 6-8 часовую термообработку. Установлено увеличение максимальной намагниченности в 20 раз при 300 К и напряженности магнитного поля 10 кЭ.

На защиту выносятся:

- предложенный механизм взаимодействия компонентов во фронте волны горения, основанный на последовательных стадиях химических реакций и структурных превращений для системы Ni(NO₃)₂-H₅NC₂O₂;

- установленные закономерности фазообразования при горении раствора Ni(NO₃)₂-H₅NC₂O₂, импрегнированного в высокодисперсный носитель SiO₂;

- выявленные особенности получения ультрадисперсного порошка α-Fe₂O₃ в матрице SiO₂ с заданной канальной структурой;

- результаты испытаний порошка Ni на носителе SiO₂ в качестве катализатора производства водорода и порошка α-Fe₂O₃ – для определения его магнитных свойств.

Апробация работы

Основные результаты и положения диссертации докладывались и обсуждались на следующих научных конференциях: Х и ХІ всероссийские с международным участием школы-семинары по структурной макрокинетике для молодых ученых (2012, 2013, г. Черноголовка, Россия); 10-я Международная научно-техническая конференция Современные Металлические Материалы и Технологии, 25-29 июня, 2013, г. Санкт-Петербург, Россия; XII International Symposium on Self-Propagating High Temperature Synthesis, October 2013, TX, USA; Международная научно-техническая конференция — Нанотехнологии функциональных материалов, 24-28 июня, 2014, г. Санкт-Петербург; XII International Conference on Nanostructured Materials, 13-18 July, 2014, Moscow, Russia; 11-я Международная научно-техническая конференция, Современные Металлические Материалы и Технологии, 23-27 июня, 2015, г. Санкт-Петербург, Россия; XIII International Symposium on Self-Propagating High-Temperature Synthesis, 12-15 October, 2015, Antalya, Turkey.

Публикации по теме диссертации

По материалам диссертации имеется 13 публикаций, в том числе 4 статьи в журналах из перечня ВАК и входящих в базы данных Scopus, Web of Science, 8 тезисов и докладов в сборниках трудов конференций, патент Российской Федерации.

Структура и объем диссертации

Диссертационная работа состоит из введения, 5 глав, общих выводов, списка использованных источников и 4 приложений. Диссертация изложена на 146 страницах, содержит 5 таблиц, 52 рисунка. Список использованной литературы содержит 214 источников.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении приведена общая характеристика работы, обоснована актуальность выбранной темы диссертации, сформулированы цели и задачи исследований, изложены основные положения, выносимые на защиту.

В первой главе представлен аналитический обзор литературы, в котором рассмотрены различные способы получения нанопорошков на основе методов, относящихся к «классическому» СВС, а также дана оценка последним достижениям и новым направлениям в области получения наноматериалов СВС в растворах; рассмотрены преимущества и недостатки существующих подходов. Показана перспективность получения и исследования материалов различного назначения, создаваемых на основе нанокристаллических порошков. Отмечено, что значительное внимание, уделяемое проблеме синтеза «горением растворов», вызвано, по крайней мере, двумя уменьшения кристаллитов причинами: возможностью размера лля улучшения такой характеристики материала, как каталитическая активность и проявлении веществом в нанокристаллическом состоянии особых свойств (магнитных, оптических и др.), не характерных для объемных материалов и обусловленных проявлением квантовых эффектов.

В последние годы прослеживается тенденция снижения энергоемкости при производстве порошков методами СВС. Однако, при «классическом» СВС ввиду относительно больших размеров исходных твердофазных реагентов в сочетании с высокой температурой реакции (>2000 К) становится крайне затруднительно синтезировать наноразмерные структуры с высокой удельной поверхностью, необходимые для создания высокоактивного и стабильного катализатора. Существующие химические способы синтеза нанопорошков, основанные на пропитке высокопористых матриц желаемым агентом, характеризуются дополнительной термообработкой в течение 4 – 6 ч при температуре 650 – 850 К, которая зачастую приводит к значительной агломерации частиц и снижению требуемых свойств. Показано, что методом СВС в растворах можно синтезировать различные виды наноразмерных материалов на основе оксидов (начиная от простых бинарных соединений до сложных легированных фаз с различными физическими и химическими свойствами). Однако, опубликованные в литературе исследования, в основном, посвящены изучению характеристик синтезированных материалов и содержат мало информации о взаимодействии компонентов в процессе горения. Остается не исследованным влияние состава исходных компонентов на фазообразование и микроструктуру продуктов, образующихся в процессе горения, а также отсутствует информации о принципиальной возможности получения чистых металлов в волне горения.

На основе анализа литературных данных сформулированы задачи исследований, требующие решения для достижения поставленной в работе цели.

Во второй главе приведены характеристики исходных прекурсоров для синтеза нанопорошков (Ni и α-Fe₂O₃) методом CBC в растворах, методики исследования механизмов их формирования, а также изучение каталитических и магнитных свойств.

В качестве исходных реагентов использовали прекурсоры фирмы Alfa Aesar (США) технической чистоты (с содержанием основного компонента 98 %): нитрат никеля (Ni(NO₃)₂·6H₂O), нитрат железа (Fe(NO₃)₃·9H₂O), глицин (H₅NC₂O₂), порошки SiO₂ различной структуры (удельная поверхность ~400 м²/г и 780 м²/г).

Для исследования влияния соотношения восстановителя к окислителю в растворах на фазовый состав продукта, образующегося в процессе синтеза, расчет исходных реагентов проводили, используя химическое уравнение 1:

 $M^{v}(NO_{3})_{v} + \left(\frac{5}{9}v\phi\right)H_{5}NC_{2}O_{2} + v\frac{5}{4}(\phi-1)O_{2} \rightarrow M^{v}O_{v/2(TB)} + \left(\frac{10}{9}v\phi\right)CO_{2(\Gamma)} + \frac{25}{18}v\phi H_{2}O_{(\Gamma)} + v\left(\frac{5\phi+9}{18}\right)N_{2(\Gamma)}$ (1) где v – валентность металла, ϕ – отношение масс восстановителя и окислителя ($\phi=1$ –

где v – валентность металла, ϕ – отношение масс восстановителя и окислителя (ϕ =1 – стехиометрический состав; ϕ >1 – избыток восстановителя; ϕ <1 – недостаток восстановителя).

Исходные твердофазные реагенты с различным соотношением φ (0,75; 1; 1,25; 1,75), взятые от стехиометрии, растворяли в дистиллированной воде при перемешивании. Полученные растворы высушивали на воздухе при температурах (T = 30 – 95 °C) 24 часа. После сушки образовавшиеся гели подвергали локальному внешнему нагреву для инициирования химической реакции.

Исследование влияния условий СВС в растворах на фазовый состав продуктов горения систем Ni(NO₃)₂-H₅NC₂O₂ и Fe(NO₃)₃-H₅NC₂O₂, импрегнированных в высокодисперсный носитель SiO₂, в том числе с заданной канальной структурой, осуществляли при условиях и составах, описанных в таблице 1.

Прекурсоры	φ	Атмосфера	Давление, МПа
$Ni(NO_3)_2 \cdot 6H_2O - H_5NC_2O_2,$	1,25 – 3	Воздух, Аргон	0,1; 0,2; 0,3; 0,5; 1
порошок SiO ₂ (удельная поверхность 400 м ² /г)			
$Fe(NO_3)_3 \cdot 9H_2O - H_5NC_2O_2$	1	Воздух	0,1
порошок SiO2 с заданной канальной			
структурой (удельная поверхность 780 м ² /г)			

Полученные после растворения реагентов растворы импрегнировали в матрицу SiO₂ и подвергали сушке на воздухе при T=70 °C. Высушенный порошок прессовали в цилиндрический образец d = 30 мм и помещали в CBC реактор (объем 1000 см³), позволяющий проводить синтез в условиях вакуума (10^{-5} МПа) или в инертной атмосфере.

Определение температуры и скорости волны горения осуществляли методами высокоскоростной инфракрасной видеосъемки (FLIR SC6000, США) и микротермопарного (К-тип, 100 мкм) измерения.

Для исследования динамики фазообразования в реакционном фронте волны горения использовали метод динамического рентгенофазового анализа (ДРФА). Исследования проводили на установке ДРОН-3 с излучением СиКа и длинной волны 15,4178 нм.

Исследование поведения гелей в условиях их медленного внешнего нагрева проводили на установке TGA-DSC (Mettler-Toledo, США), объединяющей три методики анализа: термогравиметрия, дифференциально-сканирующая калориметрия и масс-спектроскопия (ТГА-ДСК-MC). Образец нагревали до 500 °C со скоростью нагрева 50 °C/мин в атмосфере чистого аргона (99,9998%), скорость подачи газа 80 см³/мин.

Морфологию порошков исследовали методом сканирующей электронной микроскопии (СЭМ) на приборе Leo EVO 50 (Carl Zeiss, Германия) с разрешением 2 нм, оснащенном рентгеновским энергодисперсионным спектрометром EVO 50 (Oxford) с энергетическим разрешением 136 кэВ. Микроструктуру порошков изучали с использованием электронного микроскопа Magellan 400 (FEI, США) с разрешением 0,6 нм, оборудованным энергодисперсионным спектрометром Bruker (Magellan) с энергетическим разрешением 123 кэВ. Атомную структуру образцов исследовали методом просвечивающей электронной микроскопии (ПЭМ) на приборе Titan 80 – 300 (FEI, США) с ультравысоким разрешением 0,136 нм.

Фазовый состав продуктов исследовали на автоматизированном дифрактометре ДРОН 4-07 с использованием монохроматического CuKα излучения с длинной волны 1,54178 анг.

Удельную поверхность порошков определяли методом БЭТ, измерения проходили на анализаторе ASAP 2020 при температуре 77 К, в качестве адсорбата использовали азот.

Элементный состав и функциональные группы на поверхности материалов исследовали методами рентгеновской фотоэлектронной спектроскопии (РФЭС), ИК-спектроскопии и спектроскопии комбинационного рассеяния света.

В третьей главе приведены результаты исследования химического взаимодействия компонентов раствора Ni(NO₃)₂-H₅NC₂O₂ для установления механизма формирования твердофазного продукта. Установлено, что в зависимости от температуры сушки (T = 30 - 95 °C) исходного раствора температура горения гелей изменяется в широких диапазонах значений (рисунок 1). Показано, что с увеличением температуры сушки (T_c) от 30 до 95 °C максимальная температура горения увеличивается от 900 до 1200 °C, при этом скорость горения также увеличивается почти вдвое с 0,25 до 0,45 см/с. Таким образом, для корректного сопоставления свойств нанопорошков, полученных различными исследователями CBC в растворе, необходимо описание условий получения гелей. В дальнейшей работе все исследования выполняли, используя гели, высушенные при 95 °C в течение 24 ч на воздухе.

Рисунок 1 – Температурные профили горения системы $Ni(NO_3)_2 - H_5NC_2O_2$ (ϕ =1), полученные при разных температурах сушки: 1 – 30 °C, 2 – 60 °C, 3 – 95 °C

Установлено, что температура горения гелей (T_г), скорость горения (U_г), размер кристаллитов, величина удельной поверхности и соотношение Me/MeO в конечном продукте, существенно зависят от коэффициента φ (соотношение восстановитель/окислитель, реакция 1) (таблица 2).

Таблица 2 – Температура горения гелей (T_г), скорость горения (U_г) и другие характеристики продуктов горения в зависимости от соотношения ф

φ	Температура горения Т _г , °С	Скорость горения U _г , см/с	Размер кристаллитов, (нм)	Удельная поверхность БЭТ, м ² /г
0,75	470±3,5	0,05±0,01	30±0,4 (NiO)	10,3
1	1190±9	$0,40\pm0,07$	60±0,4 (NiO)	4,1
1,25	1150±9	0,11±0,04	60±0,3 (Ni)	0,44
1,75	750±5,6	0,08±0,02	40±0,4 (Ni)	1,45

Исследования фазового состава конечных продуктов синтеза методом РФА показали, что при φ≤1 образующийся продукт содержит только фазу NiO, а чистый Ni фиксируется при избытке восстановителя (φ≥1,25).

При исследовании микроструктуры конечных продуктов синтеза методом СЭМ установлено, что в интервале значений φ=0,75–1,75 образуются различные структуры: при φ≤1 – высокопористые (пенообразные) спеки, состоящие из наночастиц NiO/Ni (рисунок 2 а,б), при φ≥1,25 – спекшиеся наночастицы Ni (рисунок 2 в,г).

Рисунок 2 – СЭМ продуктов горения системы Ni(NO₃)₂ - H₅NC₂O₂ при разном φ : (a) 0,75; (б) 1; (в) 1,25; (г) 1,75

Для выяснения механизма образования твердофазных продуктов химического взаимодействия компонентов в волне горения выполнен комплекс динамических исследований с использованием методов ДРФА, ТГА-ДСК-МС. Методом ДРФА подтверждено образование NiO/Ni в волне горения в зависимости от параметра φ (рисунок 3 а,б). При исследовании процесса

Рисунок 3 – Результаты ДРФА гелей разного состава φ : a) $\varphi = 1$; б) $\varphi = 1,25$

горения в динамике обнаружено, что при φ = 1 обе фазы появляются практически мгновенно и растут с одинаковой скоростью (рисунок 3 a); при φ = 1,25 пики NiO, обнаруженные в первый

момент взаимодействия, практически исчезают на фоне быстро растущих пиков фазы никеля (рисунок 3 б).

Исследование состава твердофазных и газофазных продуктов, образующихся в процессе медленного внешнего нагрева как исходных реагентов, так и реакционных гелей проводили методом ТГА-ДСК-МС в интервале температур 25 - 500 °C. Показано, что при температуре ~ 250 °C для отдельно взятых компонентов фиксируется эндотермический эффект, который соответствует одновременному разложению нитрата никеля и глицина с образованием газофазных продуктов N₂O, CO₂, NH₃, H₂O и твердофазных – NiO, дипептид и 2,5-пиперазиндион. При дальнейшем нагреве выше 450 °C твердофазные продукты разлагаются с образованием газа NH₃, что согласуется с известными данными, полученными ранее в работе J. Li, Z. Wang, X. Yang, et al., J. Anal. Appl. Pyrolysis 2007, 80, 247–253.

При анализе горения реакционных гелей составов ϕ =0,75 и 1,75 комбинированным динамическим методом ТГА-ДСК установлен интенсивный экзотермический эффект при температуре ~250 °C, который обусловлен взаимодействием между газофазными продуктами N₂O и NH₃, образовавшимися при разложении нитрата никеля и глицина. Согласно термодинамическим расчетам по программе «THERMO», разработанной в Институте структурной макрокинетики и проблем материаловедения РАН (ИСМАН), образовавшиеся продукты вступают в реакцию с выделением огромного количества тепла, которого может быть достаточно для воспламенения и поддержания последующего горения.

Для доказательства отсутствия углерода, образующегося при разложении в волне горения дипептида и 2,5-пиперазиндиона, в продуктах синтеза выполнена закалка фронта горения с использованием массивного медного блока. Исследованиями структуры и состава границы раздела гель-продукт методами СЭМ, ПЭМ и ЭДС показано, что продукт имеет пористую микроструктуру в то время как непрореагировавший гель в основном беспористый (рисунок 4 а).

Рисунок 4 – Результаты анализа «закаленного» фронта состава ф =1,25: а) СЭМ и б) ЭДС

В образующемся продукте по мере прохождения фронта волны горения содержание твердых примесей углерода снижается (рисунок 4 б), что свидетельствует о полном окислении углерода и его удалении в виде CO₂, HCNO, HCN. При исследовании структуры материала методом ПЭМ в зафиксирован переход области границы гель-продукт ОТ аморфного состояния до поликристаллического продукта (рисунок 5 а,б). Видно, что переходная область состоит из аморфного материала (30% масс Ni, 45% масс C, 25% масс O), а также кристаллических частичек размером 1 – 5 нм в диаметре (65% масс Ni, 19% масс C, 16% масс O) (рисунок 5 a). Поликристаллический продукт состоит из более крупных частиц Ni размером от 10 нм (рисунок 5б).

Рисунок 5 – ПЭМ а) «закаленного» фронта и б) области продуктов

На основании полученных данных предложен механизм реакционного взаимодействия в волне горения в системе Ni(NO₃)₂·6H₂O – H₅NC₂O₂, схематично представленный на рисунке 6.

Рисунок 6 – Схематическое изображение механизма формирования твердофазного продукта во фронте волны горения в системе Ni(NO₃)₂ - H₅NC₂O₂

На первой стадии при инициировании процесса горения (T~250 °C) протекают параллельные реакции разложения нитрата никеля и глицина с образованием газообразных продуктов N₂O и NH₃, а также твердофазных NiO, дипептида и 2,5-пиперазиндиона

$$Ni(NO_3)_2 \cdot 6H_2O \xrightarrow{250 \ ^{\circ}C} NiO_{(TB)} + N_2O_{(\Gamma)} + H_2O_{(\Gamma)} - Q$$
(2)

$$H_5NC_2O_2 \xrightarrow{250 \, ^{\circ}C} NH_{3(\Gamma)} + CO_{2(\Gamma)} + H_2O_{(\Gamma)} + C_4H_8N_2O_{3(TB)} + C_4H_6N_2O_{2(TB)} - Q$$
(3)

Ведущей является реакция взаимодействия N₂O и NH₃, образовавшихся при разложении компонентов смеси, характеризующаяся высоким экзотермическим эффектом, которого достаточно для воспламенения и поддержания последующего горения

$$N_2O + NH_3 \xrightarrow{250 \text{ °C}} N_2 + H_2O + Q \tag{4}$$

На второй стадии при T~450 °C химические реакции протекают последовательно: сначала происходит разложение дипептида и 2,5-пиперазиндиона до избыточного количества NH₃, а затем при условии, что φ≥1,25, – восстановление NiO до металлического Ni.

$$C_4H_8N_2O_{3(r_B)} \xrightarrow{450 \text{ °C}} NH_{3(r)} + CO_{2(r)} + H_2O_{(r)}$$

$$(5)$$

$$C_4H_6N_2O_{2(TB)} \xrightarrow{450 \, ^{\circ}C} NH_{3(\Gamma)} + CO_{2(\Gamma)} + H_2O_{(\Gamma)}$$
(6)

если
$$\phi \ge 1,25$$
:
NiO + NH₃ → Ni + N₂ + H₂O (7)

На основании термодинамических расчетов в работе показано, что предложенный механизм может протекать и при синтезе других переходных металлов в системах нитрат металла – глицин. Определены равновесные концентрации Me/MeO в зависимости от значений коэффициента φ (0,75-1,75) и установлено, что для систем на основе нитратов никеля, меди и кобальта преимущественное формирование металлической фазы происходит при φ≥1,25.

В четвертой главе рассматривается влияние условий проведения синтеза в растворе на фазовый состав продуктов горения системы $Ni(NO_3)_2$ -H₅NC₂O₂, импрегнированной в высокодисперсный инертный носитель SiO₂. Инициировать самоподдерживающуюся реакцию горения в высушенном образце состава φ =1,25 на воздухе не удалось в связи с недостаточным количеством выделяющегося тепла. Для повышения экзотермичности смеси предложено к исходному раствору добавить нитрат аммония NH₄NO₃ в количестве 20% масс. от массы реагентов.

Результаты РФА продуктов горения системы $Ni(NO_3)_2$ -H₅NC₂O₂-NH₄NO₃, импрегнированной в носитель SiO₂, не зависимо от соотношения $\varphi = 1 - 3$, свидетельствуют о формировании только фазы NiO. Для выявления стадийности фазовых превращений в волне горения системы Ni(NO₃)₂-H₅NC₂O₂-NH₄NO₃ применен метод ДРФА и установлено, что во время прохождения первой стадии реакции, когда фронт волны горения проходит вдоль сканируемой

области (25 – 40 с), наблюдается существование только фазы Ni (111). В течение второй реакционной стадии, в зоне догорания (t > 40 c), относительная интенсивность пиков фазы Ni уменьшается при этом пики фазы NiO появляются и растут, что не наблюдалось при горении чистых растворов (рисунок 7 а).

Рисунок 7 – ДРФА горения смеси Ni(NO₃)₂ - H₅NC₂O₂ - NH₄NO₃ на носителе SiO₂; φ=3: а) воздух, 0,1 МПа; б) аргон 0,1 МПа

Анализ микроструктуры продуктов горения показал, что никель сформировавшийся при горении импрегнированной среды имеет высокопористую наноструктуру с размером частиц ~5 нм, в то время как частицы никеля в продукте синтеза чистых растворов имеют размер 40 - 60 нм. Вероятно, экстремально тонкие частицы никеля образовавшиеся во фронте горения окисляются в течение относительно короткого времени (~10 с) пребывания в зоне догорания. Для предотвращения окисления синтез проводили в атмосфере аргона при давлениях 0,1 – 0,5 МПа. ДРФА проведенным в процессе синтеза в атмосфере аргона показано, что в волне горения образуется только фаза никеля (рисунок 7 б).

Результаты РФА после разгрузки реактора свидетельствуют о том, что продукты, полученные при 0,1 и 0,2 МПа аргона, представляют собой порошок NiO на носителе SiO₂ (рисунок 8 а,б). Полная конверсия нитрата никеля до никеля наблюдается только при 0,5 МПа аргона. Данный эффект объясняется пассивацией поверхности ультратонких частиц никеля аморфным слоем фазы NiO.

Рисунок 8 – РФА продуктов горения смеси Ni(NO₃)₂ - H₅NC₂O₂ - NH₄NO₃ на носителе SiO₂; φ=3; аргон: (а) 0,1 МПа, (б) 0,2 МПа, (в) 0,3 МПа, (г) 0,5 МПа

Присутствие поверхностной фазы NiO подтверждается результатами исследований частиц методом фотоэлектронной спектроскопии и ПЭМ. Материал представляет собой пористые агломераты, состоящие из аморфного носителя SiO₂ и наноразмерных кристаллитов никеля (рисунок 9 а). Изображения с высоким разрешением представляют доказательство того, что наночастицы Ni имеют размер 2-5 нм в диаметре и встроены в высокопористую матрицу SiO₂ (рисунок 9 б, в).

Рисунок 9 – ПЭМ катализатора Ni/SiO2 полученного при 0,5 МПа аргона

Для оценки каталитических свойств катализаторов, полученных на носителе (Ni/SiO₂) и Ni катализатора, полученного из чистых растворов, проведены лабораторные испытания на базе Университета Нотр-Дам, США. Каталитическая активность и селективность образцов измерялась в реакции разложения этанола в кварцевом реакторе в непрерывном газовом потоке при атмосферном давлении. Образцы в виде порошка фракции от 0,6 до 1 мм помещали в реактор и подвергали восстановительной атмосфере водорода при 300 °C в течение 1 ч. Затем реактор и все линии установки продували азотом для удаления водорода. После этого азот пропускали через барботер,

наполненный этанолом и направляли в реактор. Температуры реакции варьировали от комнатной до 400 °C. Концентрации продуктов, отходящих из реактора, анализировали при помощи двух газовых хроматографов, подсоединенных параллельно. Результаты исследований показали, что конверсия этанола и селективность водорода составили 90% и 30% соответственно при температуре 200 °C. Эти данные говорят о полном разложении этанола. Также стоит отметить, что катализатор Ni/SiO₂ не уменьшает активность и селективность в течение 100 ч работы по сравнению с Ni катализатором, который деактивируется в течение нескольких часов работы (рисунок 10).

Рисунок 10 – Конверсия (X(Ni)) над Ni катализатором; конверсия (X(Ni/SiO₂)) и селективность CH₄, CO, H₂, CH₃CHO над Ni/SiO₂ катализатором в реакции разложения этанола при 200 °C

Аналогичные стендовые испытания катализаторов из нанокристаллического порошка никеля на носителе SiO₂ в реакции разложения этанола с целью получения водорода проведены в ООО Научно-технический центр "TATA". Результаты сравнительных испытаний разработанного катализатора с традиционно используемыми показали, что по стабильности он превосходит известные катализаторы в 1,5-3 раза, при этом срок эксплуатации увеличивается на 67%.

В пятой главе представлены результаты сравнительных характеристик продуктов, синтезируемых методом CBC в растворе $Fe(NO_3)_3$ - $H_5NC_2O_2$ - NH_4NO_3 , импрегнированном в матрицу SiO₂ и продуктов, получаемых методом химического осаждения из раствора $Fe(NO_3)_3$ и последующей термообработки. CBC осуществляли в растворе $Fe(NO_3)_3$ - $H_5NC_2O_2$ - NH_4NO_3 импрегнированном в мезопористую матрицу SiO₂ (удельная поверхность 780 м²/г) с заданной канальной структурой, представляющую собой непрерывные каналы с диаметром 7 нм, как показано на рисунке 11. После процесса горения продукты извлекали путем выщелачивания

матрицы в 2М растворе NaOH.

Рисунок 11 – Стадийность процесса синтеза Fe₂O₃

На рисунке 12 приведено сравнение микроструктур продуктов, синтезированных СВС в растворе и продуктов, полученных методом химического осаждения и термообработки.

Рисунок 12 – Микроструктуры композита Fe₂O₃/SiO₂, полученного: (a) CBC и (б) термообработкой в течение 2 ч

Установлено, что длительная термообработка (2-6 ч) способствует значительному росту частиц оксида железа, что приводит к разрушению тонких стенок каналов в матрице (рисунок 12 б). Этот эффект полностью исключается при получении композита методом CBC импрегнированной среды (рисунок 12 а).

Согласно результатам ПЭМ, ИК-спектроскопии, спектроскопии комбинационного рассеяния света и БЭТ анализу продукт СВС после выщелачивания матрицы представляет собой фазу α -Fe₂O₃ со средним размером частиц ~3,5 нм и удельной поверхностью 132 м²/г (рисунок 13 а). После термообработки в течение 2 и 6 ч продукты состоят из смеси фаз α - и γ -Fe₂O₃ со средним размером частиц от 2 до 25 нм и удельной поверхностью 60 и 94 м²/г (рисунок 13 б,в).

Рисунок 13 – ПЭМ и распределение частиц гематита по размеру после выщелачивания матрицы: а) продукт после CBC, б) продукты после термообработки в течение 2 ч и в) 6ч

Исследование влияния размера частиц на магнитные свойства материалов (намагниченность) проводили на сверхпроводящем квантовом интерферометре SQUID-VSM (Quantum Design, США) при температуре 300К в зависимости от напряженности магнитного поля (до 20 кЭ). Установлено, что намагниченность материала существенным образом зависит от размера частиц продуктов, полученных CBC в растворе Fe(NO₃)₃-H₅NC₂O₂-NH₄NO₃, импрегнированном в матрицу SiO₂ (α-Fe₂O₃) и синтезируемых методом химического осаждения и термообработки в течение 6ч (смесь α- и γ-Fe₂O₃). Кривая намагничивания, наблюдаемая при анализе СВС продуктов, показывает две примечательные особенности: наблюдается чрезвычайно малая петля гистерезиса с коэрцитивной силой (~0,02 кЭ) и слабой остаточной намагниченностью (~0,3 эме/г); установленная величина намагниченности, которая достигает 21 эме/г при напряженности магнитного поля 10 кЭ, заметно больше, чем намагниченность, достигаемая для более крупных частиц смеси фаз α-и γ-Fe₂O₃ (рисунок 14 а,б).

Рисунок 14 – Магнитные свойства наночастиц Fe₂O₃, полученных: а) CBC; б) термообработка в течение 6 ч

Проведенные в ООО Научно-технический центр "ТАТА" стендовые испытания магнитных свойств нанопорошка α-Fe₂O₃ со средним размером частиц 3,5 нм в сравнении с порошками, синтезируемыми гидротермальными методами, включающими 6-8 часовую термообработку выявили увеличение максимальной намагниченности в 20 раз при 300 К и напряженности магнитного поля 10 кЭ.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ РАБОТЫ

1. Впервые при помощи динамических методов исследования (ДРФА, ТГА- ДСК-МС), а также СЭМ и ПЭМ установлен механизм формирования металлических наночастиц в условиях самоподдерживающейся химической реакции горения геля Ni(NO₃)₂ - H₅NC₂O₂. Показано, что ведущей стадией процесса взаимодействия компонентов является газофазная реакция между N₂O и NH₃, взаимодействующих между собой с высоким экзотермическим эффектом, тепла которого становится достаточно для протекания самоподдерживающейся химической реакции. Формирование металла во время горения составов с избытком восстановителя ($\phi \ge 1,25$) происходит по двум последовательным реакциям. При T~250 °C за счет разложения нитрата никеля формируются наночастицы NiO (0,8 – 5 нм), а затем при T>450 °C следует восстановление NiO избытком NH₃ до Ni.

2. Разработан метод получения дисперсного активного металла Ni на высокопористом носителе SiO₂, основанный на пропитке реакционным раствором Ni(NO₃)₂-H₅NC₂O₂ инертного носителя и последующей самоподдерживающейся реакции горения геля в нанопористой среде. Показано, что высокодисперсные наночастицы Ni (5 нм), образовавшиеся в реакционном фронте в порах носителя, в дальнейшем окисляются кислородом воздуха в зоне догорания. Во время процесса горения под давлением инертного газа (Ar) выше атмосферного ($P \ge 0,5$ МПа) происходит пассивация поверхности ультратонких частиц Ni аморфным слоем NiO, что препятствует дальнейшему окислению Ni.

3. Проведены испытания катализатора из нанокристаллического порошка Ni на носителе SiO₂ в реакции разложения этанола с целью получения водорода. Показано, что полученный катализатор на основе Ni обладает высокой удельной поверхностью (155 м²/г), высокой активностью и стабильностью в реакции разложения этанола при низкой температуре (200 °C) в течение >100 ч.

4. Разработан метод синтеза ультратонких порошков α-Fe₂O₃ с размером частиц ~ 3,5 нм, заключающийся в пропитке реакционным раствором Fe(NO₃)₃ + H₅NC₂O₂ высокопористой матрицы SiO₂ с заданной канальной структурой. Разработанный способ, по сравнению с традиционными гидротермальными методами, позволяет сохранить матричные каналы и тем самым узкое распределение наночастиц по размеру (патент РФ № 2569535 от 27.11.2015 Бюл. №33 «Способ получения ультрадисперсных порошков различных оксидов с узким распределением частиц по размерам»).

5. Изучено поведение нанопорошков α -Fe₂O₃, полученных CBC в растворе Fe(NO₃)₃-H₅NC₂O₂, импрегнированном в высокодисперсный носитель SiO₂ с заданной канальной структурой и порошков Fe₂O₃, синтезированных химическим осаждением с последующей термообработкой в зависимости от напряженности магнитного поля и температурах 5 и 300 К. Обнаружено достижение аномально высокой намагниченности (21 эме/г) при напряженности магнитного поля 10 кЭ и T=300 К для CBC порошков α-Fe₂O₃, что не достигается для порошков, полученных гидротермальным синтезом.

ПУБЛИКАЦИИ ПО ТЕМЕ ДИССЕРТАЦИИ

1 Cross A, Roslyakov S.I., Manukyan Kh.V., Rouvimov S, Rogachev A.S., Kovalev D.Yu., Wolf E.E., Mukasyan A.S., In Situ Preparation of Highly Stable Ni-Based Supported Catalysts by Solution Combustion Synthesis, The Journal of Physical Chemistry C, 118(45), 26191–26198 (2014);

2 Manukyan Kh.V., Chen Yong-Siou, Rouvimov S., Li P., Li X., Dong S., Liu X., Furdyna J.K., Orlov A., Bernstein G.H., Porod W., Roslyakov S.I., Mukasyan A.S., Ultrasmall α-Fe₂O₃ Superparamagnetic Nanoparticles with High Magnetization Prepared by Template-Assisted Combustion Process. The Journal of Physical Chemistry C, 118(29), 16264–16271 (2014);

3 Manukyan Kh.V., Cross A., Roslyakov S.I., Rouvimov S., Rogachev A.S., Wolf E.E., Mukasyan A.S., Solution Combustion Synthesis of Nano-Crystalline Metallic Materials: Mechanistic Studies. The Journal of Physical Chemistry C, 117(46), 24417–24427 (2013);

4 Росляков С.И., Ковалев Д.Ю., Рогачев А.С., Манукян Х.В., Мукасьян А.С., Горение растворов: Динамика фазообразования при синтезе высокопористого никеля. Доклады Академии Наук, 449 (3), 313-316 (2013);

5 Росляков С.И., Мукасьян А.С., Рогачев А.С. Способ получения ультрадисперсных порошков различных оксидов с узким распределением частиц по размерам // Патент РФ № 2569535; заявл. 29.07.2014; опубл. 27.11.2015, Бюл. № 33. – 7 с.;

6 Roslyakov S.I., Wolf E.E., Cross A., Rogachev A.S., Mukasyan A.S., One-step preparation of highly stable Ni-based supported catalyst by solution combustion synthesis, XIII International Symposium on Self-Propagating High-Temperature Synthesis, 12-15 October, 2015, Antalya, Turkey, p. 54;

7 Росляков С.И., Рогачев А.С., Мукасьян А.С., Получение высокостабильного катализатора на основе никеля методом горения растворов, 11-я Международная научно-техническая конференция, Современные Металлические Материалы и Технологии, 23-27 июня, 2015, г. Санкт-Петербург, Россия, с. 798;

8 Rosliakov S.I., Rogachev A.S., Mukasyan A.S., Solution Combustion Synthesis of Highly Porous Nickel: Study of Reaction Mechanism, XII International Conference on Nanostructured Materials, 13-18 July, 2014, Moscow, Russia, p. 222;

9 Росляков С.И., Рогачев А.С., Мукасьян А.С., Исследование механизма реакции при синтезе нанокристаллических металлических материалов методом горения растворов, Международная научно-техническая конференция – Нанотехнологии функциональных материалов, 24-28 июня, 2014, г. Санкт-Петербург, с. 342;

10 Roslyakov S.I., Rogachev A.S., Mukasyan A.S., Solution Combustion Synthesis of Highly Porous Nickel: Dynamics of Phase and Microstructure Formation, XII International Symposium on Self-Propagating High Temperature Synthesis, October 2013, TX, USA, p. 149;

11 Росляков С.И., Рогачев А.С., Мукасьян А.С., Динамика фазообразования и структура реакционной волны при синтезе высокопористого никеля методом горения растворов, 10-я Международная научно-техническая конференция Современные Металлические Материалы и Технологии, 25-29 июня, 2013, г. Санкт-Петербург, Россия, с. 475;

12 Росляков С.И., Рогачев А.С., Мукасьян А.С., Синтез нанокристаллических материалов методом горения растворов: исследование механизма реакции, XI всероссийская с международным участием школа-семинар по структурной макрокинетике для молодых ученых, 2013, г. Черноголовка, Россия, с. 54;

13 Росляков С.И., Рогачев А.С., Мукасьян А.С., Синтез наноматериалов горением растворов динамика фазообразования при синтезе высокопористого никеля, Х всероссийская с международным участием школа-семинар по структурной макрокинетике для молодых ученых, 2012, г. Черноголовка, Россия.