на правах рукописи

Redu.

Клюева Мария Вячеславовна

ОСОБЕННОСТИ СИНТЕЗА И ЭЛЕКТРОННОГО ТРАНСПОРТА МОНОКРИСТАЛЛОВ КВАЗИКРИСТАЛЛИЧЕСКИХ ФАЗ И АППРОКСИМАНТ СИСТЕМЫ Al-Co-Cu-Fe

01.04.07

"Физика конденсированного состояния"

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание учёной степени кандидата физико-математических наук Работа выполнена на кафедре теоретической физики и квантовых технологий Федерального государственного автономного образовательного учреждения высшего образования "Национальный исследовательский технологический университет "МИСиС"

Научный руководитель:	кандидат технических наук, доцент Шулятев Дмитрий		
	Александрович		
Официальные оппоненты:	с.н.с., доктор физмат. наук Ионов Андрей		
	Михайлович (Институт физики твёрдого тела РАН)		
	с.н.с., кандидат физмат. наук Маркина Мария		
	Михайловна (МГУ имени Ломоносова)		
Велицая организация.			
Ведущая организация.	Федеральное государственное оюджетное учреждение		
	Национальный исследовательский центр		
	"Курчатовский институт"		

Защита состоится "13" апреля 2017 г. в 15-30 на заседании диссертационного совета Д 212.132.08 при Федеральном государственном автономном образовательном учреждении высшего образования "Национальный исследовательский технологический университет "МИСиС" по адресу 119991, г. Москва, Ленинский проспект, д. 4, ауд. А-305

С диссертацией можно ознакомиться в библиотеке НИТУ «МИСиС» и на сайте www.misis.ru

Автореферат разослан «___» ____ 201_г.

Ученый секретарь диссертационного совета, доктор физико-математических наук, профессор

С.М. Кухин

Общая характеристика работы

Актуальность темы исследования. Интерес к квазикристаллам, как не просто к новому классу веществ [1], а как к перспективным материалам значительно возрос открытия стабильных квазикристаллических фаз [2]. Открытие после же квазикристаллов с декагональной симметрией [3, 4], сочетающих в себе квазипериодические плоскости и периодические кристаллографические направления предоставило шанс для исследований влияния структурного порядка на физические свойства, такие как электронная проводимость. Свойства квазикристаллов определяются как локальной атомной структурой, так и апериодическим дальним порядком и существенно отличаются от свойств кристаллических и аморфных материалов. Хотя квазикристаллы являются сплавами металлических элементов, они не обладают свойствами чисто изоляторов или полупроводников. Они имеют ненулевую плотность электронных состояний на уровне Ферми, но она ниже, чем у металлов. Электросопротивление квазикристаллов ниже чем у диэлектриков и легированных полупроводников, но больше, чем у металлов [5]. Данное исследование имеет большое фундаментальное значение для вопросов понимания физики квазикристаллов, поскольку в рассматриваемой системе Al-Co-Cu-Fe в зависимости железа реализуется различный OT концентрации структурный порядок. Закономерности связи транспортных свойств с электронной структурой в данной системе ранее не исследовались.

Цели и задачи. Цель данной работы состояла в изучении степени влияния квазипериодичности и сложного локального атомного порядка (кластерной структуры) на электронный транспорт квазикристаллов и аппроксимант системы Al–Co–Cu–Fe.

Для достижения этой цели были решены следующие задачи:

- Методом кристаллизации из расплава получить массивные образцы системы Al–Co–Cu–Fe, содержащих различное соотношение Fe/Co, и обладающих различной структурой — от икосаэдрической (100% ат Fe и 0% ат Co) до декагональной (100% ат Co и 0% ат Fe).
- Провести исследования фазового и химического состава монокристаллов.
- Методами Лауэ и просвечивающей электронной микроскопии исследовать структуру полученных монокристаллов.

- Подготовить ориентированные образцы для исследований электронного транспорта вдоль имеющихся кристаллографических осей симметрии.
- Провести исследования электронного транспорта данных монокристаллов в температурном диапазоне 1,7 – 300 К и магнитных полях 0 – 18 Тл.

Научная новизна. Полученные монокристаллы системы Al–Co–Cu–Fe по качеству не уступают полученным ранее другими авторами, а по размеру превышают их. Подход к исследованию транспортных свойств при переходе от икосаэдрических систем к декагональным через аппроксиманты не нов, но к данной системе применён впервые, а температурный и магнитный диапазоны исследований в данной работе расширен по сравнению с до сих пор известными исследованиями. Результаты хорошо согласуются с полученными ранее другими авторами в схожих системах [6–8]. Измерения электронного транспорта для монокристаллических аппроксимант данного состава получены впервые.

Теоретическая и практическая значимость работы заключается в:

- Разработана методика роста для получения огранённых монокристаллов квазикристаллических фаз и аппроксимант системы Al–Co–Cu–Fe высокого качества. Огранка в данном случае позволяет существенно ускорить процесс ориентировки образцов, а также она свидетельствует о монокристалличности образцов.
- Получены новые данные о поведении электрических и магнитных свойств монокристаллов квазикристаллических фаз и аппроксимант системы Al–Co–Cu–Fe. Полученные данные хорошо вписываются и дополняют имеющиеся на данный момент исследования в этой области.
- Выводы, сделанные о степени влияния квазипериодичности и сложного локального атомного порядка (кластерной структуры) на электронный транспорт квазикристаллов и аппроксимант системы Al–Co–Cu–Fe имеют большое значение для теории квазикристаллов, как области физики конденсированного состояния.

Методы исследования. Экспериментальные образцы квазикристаллов и аппроксимант выращивались методом кристаллизации из расплава. Технологическая цепочка получения монокристаллических фаз квазикристаллов и аппроксимант

включает в себя следующие этапы: взвешивание исходных материалов на аналитических весах, перемешивание их в агатовой ступке в изопропаноле, прессование, помещение в кварцевую ампулу с корундовым тиглем в инертную атмосферу, расплав с последующим медленным охлаждением в печи.

Анализ химического состава производился в Аналитическом сертификационном испытательном центре ФГБУН Институт проблем технологии микроэлектроники и особо чистых материалов РАН (АСИЦ ИПТМ РАН). Содержание железа в исследуемых образцах определено методом атомной эмиссии с индуктивно связанной плазмой (iCAP-6500, Thermo Scientific, США).

Рентгенофазовый анализ производился на рентгеновском дифрактометре ДРОН 4.0 с использованием Со K_α излучения.

Предварительный структурный анализ был осуществлён методом Лауэ на установке УРС-2 с помощью Fe K_a излучения. Съёмка производилась на отражение.

Кристаллическая структура полученных монокристаллов исследовалась методом электронной просвечивающей микроскопии. Пробоподготовка образцов ДЛЯ просвечивающей электронной микроскопии осуществлялась с помощью фокусированного ионного пучка (FEI Strata FIB 201) с ускоряющим напряжением 30 кВ. Изображения получены на микроскопе модели JEM-2100 фирмы Jeol при ускоряющем напряжении 200 кВ.

Измерения электросопротивления производились четырёхконтактным методом в Национальной Лаборатории Сильных Магнитных Полей (США), на сверхпроводящем магните SCM2, работающем на переменном токе. Использовалась температурная вставка (VTI) с рабочим температурным диапазоном от 1,4 К до 300 К.

Обработка результатов производилась с помощью программы QtiPlot 0.9.8.3 [9].

Положения, выносимые на защиту

- Впервые получены массивные монокристаллические образцы квазикристаллов и аппроксимант системы Al–Co–Cu–Fe.
- Результаты структурных исследований показывают что в системе Al–Co–Cu–Fe при увеличении соотношения Fe/Co 0—0,3—1,73—3,4 формируются структуры: декагональный квазикристалл — декагональная аппроксиманта икосаэдрическая аппроксиманта — икосаэдрический квазикристалл

соответственно.

- Результаты исследований электротранспортных свойств показывают что данные свойства декагональных квазикристаллов и аппроксимант сопоставимы со свойствами аморфных материалов, а соответствующие свойства икосаэдрических квазикристаллов хорошо согласуются с литературными данными и показывают зависимость, которая по характеру ближе к полупроводниковой.
- Результаты исследований икосаэдрических квазикристаллов показывают влияние на магнетосопротивление эффектов квантовой интерференции (слабой локализации и электрон-электронного взаимодействия).

Степень достоверности результатов обеспечена применением современных методик и оборудования на каждом этапе исследования:

- Для получения монокристаллов использовались порошки металлов категории ОСЧ, погрешность в их взвешивании составляла ±0,001 гр, температура в печи при синтезе контролировалась с точностью ±1° С.
- Была произведена тщательная аттестация полученных монокристаллических образцов по трём параметрам — химический состав, фазовый состав и структура.
- Измерения электросопротивления производились на высокочувствительном оборудовании в Национальной Лаборатории Сильных Магнитных Полей (США), которая является одним из мировых лидеров исследований в области физики конденсированного состояния вещества.

Личный вклад автора состоит в получении всех исследуемых в рамках данной работы монокристаллов, их предварительном структурном анализе, получении ориентированных образцов, измерениях электронного транспорта и обработке данных. Совместно с научным руководителем была осуществлена постановка задачи исследования, планирование экспериментов, обсуждение результатов и их научная интерпретация.

Вклад соавторов. Пробоподготовка образцов для просвечивающей электронной микроскопии была проведена к.ф.-м.н. Андреевым Николаем Валерьевичем. Дифракционные картины для структурного анализа получены к.ф.-м.н. Табачковой

Натальей Юрьевной. Спектры для исследования фазового состава образцов подготовлены к.ф.-м.н. Свиридовой Татьяной Александровной.

Результаты диссертационной работы получены в ходе выполнения научнотехнического проекта по теме «Композиционные материалы нового поколения на основе наполненных квазикристаллами термопластичных полимерных матриц». Соглашение № 14.578.21.0003 ФЦП «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2014—2020 годы», мероприятие 1.3, идентификатор проекта RFMEFI57814X0003.

Апробация работы. Результаты работы докладывались на четырнадцати конференциях – девяти отечественных и пяти международных:

1. Shulyatev D., Klyueva M. и др. Electron transport in Al–Cu–Co–Fe quasicrystals and approximants // Abstracts. Kathmandu, Nepal: University of Liverpool, 2016. C. 103.

2. Клюева М.В., Шулятев Д.А. Особенности электронного транспорта декагональных квазикристаллов системы Al–Co–Cu(Fe) // Тезисы. Гатчина, Ленинградская область: ФГБУ «ПИЯФ» НИЦ «КИ», 2016. С. 111.

3. Shulyatev D., Klyueva M. и др. Single crystal growth and study of decagonal Al-Co-Cu and Al-Co-Ni quasicrystals // Abstracts. : Krystalografická spoleènost, 2015. C. 285.

4. Клюева М.В. и др. Декагональные монокристаллы системы Al–Co–Cu: синтез, структура, резистивные особенности. // Тезисы. г. Гатчина, Ленинградская обл.: ФГБУ «ПИЯФ» НИЦ «КИ», 2015. С. 86.

5. Клюева М.В. Разработка методики выращивания и исследование резистивных особенностей моноквазикристаллов Al-Co-Cu и Al-Co-Ni с декагональной симметрией // Тезисы. Москва: МИСиС, 2015. С. 952.

6. Клюева М.В. и др. Синтез и свойства квазикристаллов системы Al–Co–Cu // Тезисы. г. Казань: КФУ, 2014. С. 257.

7. Клюева М.В., Шулятев Д.А., Козловская Н.А. Синтез декагональных монокристаллов Al–Co–Cu // Тезисы докладов 48-ой школы ПИЯФ по физике конденсированного состояния. г. Гатчина, Ленинградская обл.: ФГБУ «ПИЯФ» НИЦ «КИ», 2014. С. 32.

8. Клюева М.В. и др. Особенности получения квазикристаллов Al–Co–Cu, возможность наличия резистивных особенностей // Тезисы. г. Дубна: ЛНФ ОИЯИ,

2014.

9. Клюева М.В., Шулятев Д.А., Козловская Н.А. Синтез декагональных монокристаллов Al–Co–Cu // Тезисы. г. Дубна: ЛНФ ОИЯИ, 2013. С. 13.

10. Клюева М.В. и др. Получение декагональных монокристаллов Al–Co–Cu для исследования упругих свойств // Тезисы. г. Гатчина, Ленинградская обл.: ФГБУ «ПИЯФ» НИЦ «КИ», 2013. С. 51.

11. Klyueva M.V. и др. Preparation and measurement of lattice parameters by X-ray single crystal of high Al-Cu-Co // Abstracts. Kaliningrad: Immanuel Kant Baltic Federal University, 2012. C. 26.

 Клюева М.В., Шулятев Д.А., Козловская Н.А. Получение и исследования декагональных квазикристаллов Al–Co–Cu // Тезисы докладов 46-ой школы ПИЯФ по физике конденсированного состояния. Петербургский Институт Ядерной Физики им.
Б.П. Константинова, г. Гатчина, Ленинградская обл.: ФГБУ «ПИЯФ» НИЦ «КИ», 2012. С. 101.

 Клюева М.В. Получение, рентгенофазовый анализ и мёссбауэровская спектроскопия квазикристаллов системы Al–Fe–Cu // Тезисы. Москва: НИТУ МИСиС, 2012. С. 52.

14. Клюева М.В. и др. Получение, рентгеноструктурный анализ и мёссбауэровская спектроскопия квазикристаллов системыы Al–Cu–Fe // Тезисы. Москва: НИЦ «КИ», 2011. С. 315.

Публикации. Результаты работы опубликованы в трёх статьях в отечественных и зарубежных реферируемых журналах, рекомендованных высшей аттестационной комиссией Российской Федерации для опубликования научных результатов диссертаций:

1. Шулятев ДА, Клюева МВ, Девараджан У. Анизотропия электротранспортных свойств декагональных квазикристаллов Al-Cu-Co(Fe). ФММ. 2016 г.;117(9).

2. Shulyatev DA, Nigmatulin AS, Chernikov MA, Klyueva MV, Shaitura DS, Golovkova EA. Formation of the icosahedral Al-Cu-Fe phase by solid state reaction. APhysPolA. aBryct 2014 r;126(2):581.

3. Шулятев, Д. А., М. А. Черников, В. В. Коровушкин, Н. А. Козловская, и М. В. Клюева. «Получение, рентгенофазовый анализи мёссбауэровская спектроскопия

квазикристаллов системы Al-Fe-Cu», вып. 5 (2013 г.): 38-41.

Объем и структура работы. Работа изложена на 102 страницах, содержит 62 рисунка и 7 таблиц. Диссертация состоит из введения, пяти глав и заключения. Список цитированной литературы содержит 108 наименований.

Содержание работы

Во введении обоснована актуальность темы исследования, степень её разработанности, научная новизна, показан вклад автора и соавторов. Излагаются причины, по которым квазикристаллы и их аппроксиманты представляют интерес для

Рисунок 1: а: пример 2-d квазикристалла, б: пример 3-d квазикристалла.

исследования: их нельзя отнести ни к металлам, ни к изоляторам, ни к полупроводникам, хотя, как правило, квазикристаллы представляют из себя сплавы металлических элементов.

В главе 1 представлен аналитический обзор литературы, который разделён на несколько частей. Первая часть содержит краткую справку о предпосылках и об истории открытия квазикристаллов, описывается геометрия, позволяющая описать их структуру. Во второй части изложена основная информация, которая на данный момент известна о квазикристаллах, их классификация, описываются основные свойства, системы, в которых образуются квазикристаллические соединения. Дано описание двух основных типов квазикристаллических структур: 2-д-апериодических декагональных И 3-d-апериодических икосаэдрических квазикристаллов (рисунок 1). В третьей части кратко излагаются методы,

Рисунок 2: Кластер Маккея, состоящий из 54 атомов.

применяемые ДЛЯ описания структуры квазикристаллов, изложена кластерная модель. Существует несколько способов описания структуры апериодических кристаллов. Bce ОНИ В большей ИЛИ меньшей степени опираются на идеи кластерного подхода, построения апериодических разбиений И технику пространств проецирования ИЗ высшей размерности на иррациональную гиперплоскость. Апериодические разбиения (мозаики) могут быть получены в результате сборки базовых кластеров (или ячеек) нескольких типов. Блоки мозаики декорируются атомными кластерами по аналогии с как декорируется тем, элементарная ячейка в кристаллах. Дальний порядок получается в результате закономерного пристраивания новых кластеров к уже имеющимся по правилам локального соответствия. Альтернативный путь — подразбиение кластеров на субъединицы меньшего размера по правилам инфляции/дефляции [10]. Существует несколько типов кластеров, которые реализуются в квазикристаллах различных систем. Широкий класс квазикристаллических соединений образуют сплавы алюминия с переходными металлами. В случае, когда в этих сплавах образуются квазикристаллические фазы с икосаэдрической симметрией (как, например, в системе Al-Cu-Fe), их структура формируется из кластеров Маккея (рисунок 2), состоящего из 54 атомов. В случае, когда образуются квазикристаллические фазы с декагональной симметрией(например, в системе Al-Cu-Co), кластеры Маккея деформируются, образуя «колончатую структуру», периодически уложенную в одном направлении и апериодически в плоскости, перпендикулярной этому направлению. Также в главе 1 описываются структуры и свойства кристаллических аппроксимант – соединений близких к квазикристаллам по составу и структуре, но содержащих в укладке кластеров трансляционную симметрию, и, соответственно, не являющимися апериодическими.

Глава 2 посвящена описанию методов и подходов, используемых в рамках данной работы для получения монокристаллических образцов квазикристаллических фаз и аппроксимант системы Al–Co–Cu–Fe. На основании анализа тройных фазовых ди-

Рисунок 3: Псевдо-тройная диаграмма системы Al–Cu–Co–Fe.

систем Al-Cu-Fe аграмм И Al-Си-Со построена гипотетичеспсевдо-тройная диаграмма кая Al-Co-Cu-Fe (рисунок 3). [11] На рисунке 3 отмечены области существования — икосаэдрической Al-Си-Fe и декагональной Al-Cu-Co квазикристаллических Ha фаз. псевдо-тройной диаграмме Al-Co-Cu-Fe ЭТИ области расположены достаточно близко друг К другу, ЧТО позволяет

предположить, что замещая кобальт на железо в соединении Al–Cu–Co можно получить четырехкомпонентные квазикристаллические фазы и кристаллические аппроксиманты Al–Co–Cu–Fe.

Получение монокристаллов Al–Co–Cu–Fe осуществлялось методом роста из раствора в расплаве. Составы исходных заготовок для синтеза выбирались таким образом, чтобы на псевдо-тройной диаграмме Al–Co–Cu–Fe они находились в областях, соответствующих декагональной и икосаэдрической фазам и в области между ними. Порошки Al, Co, Cu и Fe чистотой 99,99% взвешивались в необходимых пропорциях, тщательно перемешивались и прессовалась в таблетки диаметром 5–10 мм. Готовые таблетки помещались в тигли Al₂O₃. Для предотвращения окисления исходных компонентов при высоких температурах, рост монокристаллов проводился в инертной атмосфере (аргон): тигли с образцами помещались в кварцевую ампулу, откуда откачивался воздух, напускался инертный газ, после чего ампулы герметизировались. Технологическая цепочка получения заготовок для выращивания монокристаллов представлена на рисунке 4.

Рисунок 4: Схема технологической цепочки получения заготовок для выращивания монокристаллов системы Al–Co–Cu–Fe: а) взвешивание исходных компонентов, б) перемешивание компонентов, в) прессование образцов, г) заготовка для роста монокристаллов, д) герметичная кварцевая ампула с тиглем с заготовками, е) печь для синтеза монокристаллов методом кристаллизации из раствора в расплаве.

Режимы термообработки исходных заготовок для получения монокристаллов квазикристаллических фаз и аппроксимант системы Al–Co–Cu–Fe выбирались на основании анализа псевдобинарных диаграмм (вертикальных сечений тройных диаграмм Al–Cu–Fe и Al–Cu–Co) (рисунок 5). [12] На псевдобинарной диаграмме Al–Cu–Co присутствует область первичной кристаллизации декагональной фазы (область D, рисунок 5а), соответствующая концентрациям 2–8 ат. % кобальта. Фазовая же диаграмма системы Al–Cu–Fe такой области не имеет (рисунок 5б).

Для получения монокристаллов Al–Co–Cu–Fe с небольшим (менее 0,8 ат. %) содержанием железа использовались заготовки, состав которых соответствовал области первичной кристаллизации декагональной фазы. Заготовки расплавлялись при температурах 1000-1100 °C и затем охлаждались со скоростью 2–3 град/час.

Рисунок 5: псевдо-бинарные диаграммы а) Al-Cu-Co, б) Al-Cu-Fe.

Рисунок 6: фото монокристаллических образцов декагонального dQ и икосаэдрического iQ квазикристаллов

В результате были получены монокристаллы Al-Cu-Co с декагональной симметрией (рисунок 6dQ). Увеличение концентрации железа приводит к сужению, а при дальнейшем увеличении к исчезновению области первичной кристаллизации однофазных образцов. Режимы термообработки, используемые для получения монокристаллов Al-Co-Cu-Fe с содержанием железа больше 1 ат. % приведены на рисунке 7. Нагрев производился до температуры 1200 °С (превышающей температуры ликвидус на соответствующих псевдобинарных диаграммах) с двухчасовой выдержкой в жидком состоянии. Затем заготовка со скоростью 1 град/мин охлаждалась до температуры на 20 градусов ниже максимальной температуры существования

получаемой фазы в системе Al-Co-Cu-Fe. Быстрое охлаждение из жидкого состояния необходимо для того, чтобы предотвратить зарождение посторонних фаз,

Рисунок 7: Режим термообработки для получения декагональных монокристаллов системы Al–Co– Си методом роста из расплава.

находящихся в равновесии с жидкостью при соответствую-ЩИХ температурах. Затем образцы охлаждались ДО температуры 400 °С со скоростью 2 - 3град/час. В были результате получены монокристаллы Al-Co-Cu-Fe с различным соотношением Fe/Co. Характерные линейные размеры выращенных монокристаллов - несколько миллиметров. Фазовый и химический

анализы полученных монокристаллов показали, что при увеличении отношения Fe/Co происходит последовательная трансформации структуры: декагональный квазикристалл (d–Q) — декагональная аппроксиманта (d–A) — икосаэдрическая аппроксиманта (i–A) — икосаэдрический квазикристалл (i–Q). Морфология монокристаллов изменяется при увеличении отношения Fe/Co от вытянутых десятигранных призм (форма, характерная для монокристаллов с декагональной симметрией), до многогранников с плоскими углами граней, характерными для монокристаллов с икосаэдрической симметрией.

Таблица 1: Химический состав четырёх типов монокристаллов – декагональных монокристаллов (d-Q), декагональных аппроксимант (d-A), икосаэдрических монокристаллов (i-Q) и икосаэдрических аппроксимант (i-A).

ат%	d-Q	d-A	i-Q	i-A
Al	64,34	63,12	64,36	71,06
Fe	0,07	2,68	10,39	13,81
Co	18,25	9,48	3,05	8,28
Cu	17,34	24,73	22,20	6,85

Исследования фазового состава производились на измельчённых механическим образом монокристаллах методами рентгеновской дифракции на дифрактометре ДРОН 4.0 с использованием Со_{кα} излучения. Анализ фазового состава исследуемых монокристаллов подтвердил, что образцы dQ, iQ, dA на 100 % состоят из — декагональной, икосаэдрической, а также кристаллической декагональной аппроксиманты соответственно. Образец iA на 100 % состоит из фазы Cu₆Fe₂₁Al₇₃,

пространственной группы C2/m с параметрами решётки а=15,444 Å, b=8,007 Å, c=12,432 Å и углом b=107,97° и согласно литературным данным [12], является икосаэдрической аппроксимантой.

В главе 3 рассказывается об исследованиях структуры выращенных монокристаллов системы Al-Co-Cu-Fe, который производился с помощью обратного Лауэ анализа и просвечивающей электронной микроскопии. Была проанализирована структура четырёх типов образцов относящихся, согласно данным рентгенофазового анализа, к декагональным иикосаэдрическим квазикристаллическим фазам и к соответствующим кристаллическим аппроксимантам. Результаты структурных исследований хорошо согласуются с данными рентгенофазового анализа: при увеличении соотношения концентраций Fe/Co симметрия кристаллической структуры образцов изменяется от 2-d-апериодической декагональной к 3-d-апериодической икосаэдрической через структуры соответствующих кристаллических аппроксимант. Таким образом, изменение соотношения концентраций Fe/Co приводит как к изменению локальной атомной структуры (переход от кластера Маккея с икосаэдрической симметрией, к «колончатой» структуре кластера с декагональной симметрией), так и к переходу от периодической апериодической к укладке кластеров, характерных ДЛЯ квазикристаллических фаз и кристаллических аппроксимант соответственно.

Рисунок 8: Картины электронной дифракции, полученные от образцов dQдекагонального квазикристалла, dA-декагональной аппроксиманты, iAикосаэдрической аппроксиманты, iQ-икосаэдрического квазикристалла.

Рисунок 9: Температурные зависимости удельного электросопротивления в нулевом поле образцов, ориентированных в периодическом направлении р//(T) и в апериодической плоскости р_(T). Глава 4 посвящена исследованиям электронного транспорта квазикристаллов и аппроксимант системы Al-Co-Cu-Fe. Из выращенных монокристаллов вырезались образцы В форме параллелепипедов. прямоугольных на которых стандартным четырехконтактным методом измерялись температурные зависимости сопротивления в диапазоне температур 1,4–300 К и в магнитных полях до 18 Тл. Измерения проводились для двух конфигураций: при протекании тока вдоль длинной оси образцов И В перпендикулярном направлении. Магнитное поле в обеих конфигурациях было приложено перпендикулярно направлению протекания тока И параллельно квазипериодической Температурные плоскости. зависимости удельных сопротивлений образцов 9. представлены на рисунке Для декагонального квазикристалла И кристаллических аппроксимант наблюдается корреляция между величиной удельного сопротивления р₃₀₀ и величиной температурного коэффициента α₃₀₀ при комнатной температуре: при увеличении величины ρ₃₀₀, значение α₃₀₀ уменьшается. наблюдается Такая корреляция R неупорядоченных системах, в частности, в аморфных сплавах (корреляция Мооіі) [13]. B декагональном квазикристалле И декагональной апроксиманте наблюдается сильная анизотропия проводимости.

Величина удельного сопротивления, измеренная вдоль длинной оси образцов р// совпадающей с осью (псевдоосью) десятого порядка, значительно ниже величины удельного сопротивления в перпендикулярном направлении, р. Кривая р₁₁ растет почти линейно выше 50 К с ростом температуры, в то время как кривая р⊥ в том же температурном диапазоне хорошо аппроксимируется полиномом второго порядка. Полученные результаты находятся в хорошем согласии с результатами измерений зависимостей сопротивления температурных декагональных квазикристаллов, (рисунок 10). [6-8] Для икосаэдрической полученных различными методами аппроксиманты также наблюдается сильная анизотропия электросопротивления, соизмеримая с анизотропией электросопротивления декагональной фазы. значения удельных сопротивлений этих образцов. Удельное Соизмеримы И сопротивление икосаэдрического квазикристалла Al-Co-Cu-Fe значительно больше чем в декагональных квазикристаллах и кристаллических аппроксимантах. Удельное сопротивление икосаэдрического квазикристалла возрастает с понижением температуры во всем температурном диапазоне измерений. Результаты исследований температурных зависимостей удельного сопротивления квазикристаллических фаз и кристаллических аппроксимант хорошо согласуются с теорией Фабера-Займана, применяемой для аморфных материалов.

Рисунок 10: Нормированное удельное электросопротивление $\rho/\rho_0(T)$; слева: измеренное вдоль оси роста кристаллов (dQ_{//}, dA_{//}, iA_{//}); справа: измеренное перпендикулярно направлению роста (dQ_⊥, dA_⊥, iA_⊥, iQ), а также литературные данные d-Al–Cu–Co, d-Al–Ni–Co, d-Al–Si–Cu–Co, d-Al–Cu–Co. [6–8]

B главе 5 описываются результаты исследования магнетосопротивления монокристаллов системы Al-Co-Cu-Fe. При температуре T=1,7 К во всех образцах

Рисунок 11: Магнетосопротивление икосаэдрического квазикристалла iQ при температурах 1,7, 120 и 300 К

наблюдается сильное положительное магнетосопротивление. Полевые зависимости сопротивления декагонального квазикристалла и кристаллических аппроксимант спрямляются в координатах $\Delta \rho / \rho(B^2)$ (рисунок 12 слева). Для икосаэдрического квазикристалла линейная зависимость появляется В координатах $\Delta p/\rho(B^{1/2})$ (рисунок 12 справа). При температуре T=120 К в квазикристалле с икосаэдрической симметрией наблюдается слабое магнетосопротивление отрицательное (рисунок 12). Отрицательное магнетосопротивление в квазикристаллах обусловлено

вкладом квантово-интерференционных эффектов (электрон-электронного взаимодействия и слабой локализации) в процессы рассеяния [14].

Рисунок 12: Спрямленное в координатах $\Delta \rho / \rho_0(B^2)$ магнетосопротивление декагональных квазикристаллов и аппроксимант системы Al-Co-Cu и спрямленное в координатах Δρ/ρ₀(B^{1/2}) магнетосопротивление квазикристалла системы Al–Cu–Fe при температурах 1,7 К.

Основные выводы.

- 1 B Al-Co-Cu-Fe системе получена новая четырехкомпонентная квазикристаллическая фаза С икосаэдрической симметрией, a также четырехкомпонентные икосаэдрическая и декагональная кристаллические аппроксиманты.
- Показано, что при увеличении отношения Fe/Co происходит последовательное изменение структуры: декагональный квазикристалл → декагональная аппроксиманта → икосаэдрическая аппроксиманта → икосаэдрический квазикристалл.
- В системе Al–Co–Cu–Fe обнаружена сильная анизотропия электросопротивления икосаэдрической аппроксиманты соизмеримая с анизотропией электросопротивления декагональной фазы.
- Для кристаллических аппроксимант и декагональных квазикристаллов установлена корреляция, характерная для неупорядоченных систем: уменьшение температурного коэффициента при увеличении величины удельного электросопротивления.
- 5. Установлено, что электротранспортные свойства декагонального квазикристалла и кристаллических аппроксимант в четырехкомпонентной системе Al-Co-Cu-Fe существенно отличаются от электротранспортных свойств икосаэдрического квазикристалла: a) температурный коэффициент сопротивления декагональных квазикристаллов кристаллических И аппроксимант положителен в диапазоне температур 1,7–300 К; температурный коэффициент сопротивления икосаэдрического квазикристалла отрицателен в указанном диапазоне температур, б) магнетосопротивление декагонального квазикристалла и кристаллических аппроксимант пропорционально В^{2.} В икосаэдрическом квазикристалле магнетосопротивление пропорционально В^{1/2}.
 - 6. Показано, что электротранспортные свойства квазикристаллических фаз и кристаллических аппроксимант в системе Al–Co–Cu–Fe хорошо согласуются с теорией Фабера–Займана, применяемой для аморфных материалов, с учетом квантово-интерференционных эффектов, что позволяет рассматривать электронный транспорт в квазикристаллах как совокупность баллистического и диффузионного движения носителей зарядов.

Список цитируемой литературы

1. Shechtman D. Metallic Phase with Long-Range Orientational Order and No Translational Symmetry / Shechtman D., Blech I., Gratias D., Cahn J.W. // Physical Review Letters – 1984. – T. 53 – № 20 – C.1951–1953.

2. Dubost B. Large AlCuLi single quasicrystals with triacontahedral solidification morphology / Dubost B., Lang J.-M., Tanaka M., Sainfort P., Audier M. // Nature – 1986. – T. $324 - N_{\odot} 6092 - C.48 - 50$.

3. Bendersky L. Quasicrystal with One-Dimensional Translational Symmetry and a Tenfold Rotation Axis / Bendersky L. // Physical Review Letters – 1985. – T. 55 – № 14 – C.1461–1463.

4. Chattopadhyay K. Electron microscopy of quasi-crystals in rapidly solidified Al-14% Mn alloys / Chattopadhyay K., Ranganathan S., Subbanna G.N., Thangaraj N. // Scripta Metallurgica – 1985. – T. 19 – N_{2} 6 – C.767–771.

5. Черников М.А. Квазикристаллы / Черников М.А., Векилов Ю.Х. // Успехи физических наук – 2010. – Т. 180 – № 6 – С.561–586.

6. Yun-ping W. Universality in the resistivity-temperature relationship for decagonal quasicrystals / Yun-ping W., Dian-lin Z. // Physical Review B – 1994. – T. 49 – N_{2} 18 – C.13204–13207.

7. He L.X. Stable Al–Cu–Co decagonal quasicrystals with decaprismatic solidification morphology / He L.X., Wu Y.K., Meng X.M., Kuo K.H. // Philosophical Magazine Letters – 1990. – T. $61 - N_{\text{P}} 1 - C.15$ –19.

8. Chen L.F. Phd thesis, Institute of Physics, Chinese Academy of Sciences, 1992.

9. Vasilief I.QtiPlot: data analysis and scientific visualization / I. Vasilief.

10. Senechal M.Quasicrystals and Geometry / M. Senechal – CUP Archive, 1996.– 310c.

11. Grushko B. Formation of quasiperiodic and related periodic intermetallics in alloy systems of aluminum with transition metals / Grushko B., Velikanova T. // Calphad – 2007. – T. $31 - N_{\odot} 2 - C.217-232$.

12. Trebin H.-R.Quasicrystals structure and Physical Properties / H.-R. Trebin – Strauss Offsetdruck GmbH, Mörlenbach, 2003.

13. Cywinski R. Amorphous Intermetallic Alloys: Resistivity / под ред. R.W. Cahn, M.C. Flemings, B. Ilschner, E.J. Kramer, S. Mahajan, P. Veyssière. Oxford: Elsevier, 2001. – 160–166с.

14. Rapp Ö. Electronic transport properties of quasicrystals: the unique case of the magnetoresistance / Rapp Ö. // Materials Science and Engineering: A - 2000. - T. 294-296 - C.458-463.