КОМЛЕВ АЛЕКСАНДР СЕРГЕЕВИЧ

РАДИАЦИОННО-ТЕРМИЧЕСКОЕ СПЕКАНИЕ В ПУЧКЕ БЫСТРЫХ ЭЛЕКТРОНОВ ПОЛИКРИСТАЛЛИЧЕСКИХ ФЕРРОШПИНЕЛЕЙ

Специальность 05.27.06 – Технология и оборудование для производства полупроводников, материалов и приборов электронной техники

> Автореферат диссертации на соискание ученой степени кандидата технических наук

Работа выполнена в ФГАОУ ВО «Национальный исследовательский технологический университет «МИСиС» на кафедре Технологии Материалов Электроники

Научный руководитель:	заведующий кафедрой ТМЭ НИТУ «МИСиС», доктор					
	физико-математических наук, профессор, член-корр.					
	Академии Инженерных Наук					
	Костишин Владимир Григорьевич					
Научный консультант:	профессор кафедры ТМЭ НИТУ «МИСиС»,					
	доктор геолого-минералогических наук					
	Коровушкин Владимир Васильевич					
Официальные оппоненты:	доктор технических наук, ведущий научный					
	сотрудник проблемной научно-исследовательской					
	лаборатории электроники, диэлектриков и					
	полупроводников Национального исследовательского					
	Томского политехнического университета					
	Гынгазов Сергей Анатольевич					
	кандидат технических наук, преподаватель ГАПОУ					
	Пензенской области					
	"Кузнецкий колледж электронных технологий"					
	Меньшова Светлана Борисовна					

Ведущая организация: АО «НПП «Исток им. Шокина» (г. Фрязино Московской области)

Защита диссертации состоится «27» июня 2018 г. в 14 ч. 30 мин. на заседании диссертационного совета Д 212.132.06 в Национальном исследовательском технологическом университете «МИСиС» по адресу: 119049, г. Москва, Крымский вал, д. 3, ауд. 212.

С диссертацией можно ознакомиться в библиотеке НИТУ «МИСиС». Автореферат размещен на сайте: www.misis.ru

Отзывы на автореферат и диссертацию отправлять по адресу: 119049, г. Москва, Ленинский проспект, д. 4, НИТУ «МИСиС», подразделение 219

Автореферат разослан «__» ____ 2018 г.

Ученый секретарь диссертационного совета Д 212.132.06, доктор физикоматематических наук, профессор

Ковалев Алексей Николаевич

Общая характеристика работы

<u>Актуальность темы исследования.</u> Среди материалов, получаемых по керамической технологии, широко распространены изделия из поликристаллических ферритов, представляющих собой соединения оксида железа с оксидами других металлов. Обладая уникальным сочетанием магнитных, электрических и эксплуатационных свойств, они относятся к классу электронных компонентов, что обеспечивает их широкое применение в определяющих технический прогресс областях науки и техники.

На сегодняшний день магнитомягкие ферриты находят широкое применение в радиоэлектронике и приборостроении в качестве сердечников трансформаторов для работы в сильных полях, а также, как радиопоглощающие материалы в области нескольких Промышленное получение настоящих ферритов гигагерц. осуществляется С использованием метода керамической технологии. Из ферритового порошка, синтезированного ИЗ смеси исходных ферритообразующих компонентов И гранулированного со связкой, прессуют изделия нужной формы, которые подвергают затем спеканию в печах при температурах от 900 до 1500°С на воздухе или в специальной газовой атмосфере. Основной недостаток такого метода получения ферритов – высокая энергоемкость и длительность. Эффективной технологией получения ферритовой керамики может стать технология радиационно-термического спекания (РТС).

При прохождении ускоренных электронов через вещество большая часть энергии излучения пучка преобразуется в тепловую энергию, что приводит к повышению температуры облучаемого объекта. Скорость разогрева и температура объекта определяются мощностью пучка ускоренных электронов и частотой следования импульсов электронного пучка.

В случае термического нагрева, когда нагревание объекта осуществляется посредством передачи тепла от нагреваемой поверхности в объем объекта, максимальная температура объекта наблюдается на поверхности. При радиационно-термическом разогреве происходит объемный разогрев объекта.

Преимущества радиационно-термического метода (одновременного воздействия радиации и температуры) заключаются в быстроте и низкой инерционности разогрева материалов, отсутствии контакта нагреваемого тела и нагревателя, однородности нагрева материала по всему объему. Имеющиеся на сегодняшний день типы ускорителей электронов с E = 5–13 МэВ позволяют нагревать твердые тела до температуры их плавления.

Способ нагрева прессовки электронным пучком позволяет получать оксидные керамические материалы с однородным фазовым составом и малыми упругими напряжениями, что обеспечивает повышение их эксплуатационных характеристик и весьма актуально в производстве ферритов.

Степень проработанности темы

Радиационно-термический метод спекания продемонстрировал свои уникальные возможности при синтезе и спекании некоторых сложнооксидных соединений, портландцементных клинкеров, а также при вскрытии и обогащении минерального сырья. В области радиационно-термического синтеза литиевых ферритов системные исследования выполнены в работах ученых Томского политехнического университета, в области РТС гексагональных ферритов BaFe₁₂O₁₉ и BaFe_{12-x}(Al,Ni,Ti,Mn)_xO₁₉ – в работах кафедры Технологии Материалов Электроники НИТУ «МИСиС» под руководством проф. Костишина В.Г.

Детальные исследования радиационно-термической активации диффузии представлены в научных публикациях томских ученых. Несомненно, мировое первенство в изучении РТС ферритов принадлежит томской научной школе (Суржиков А.П., Гынгазов С.А., Притулов А.М., Анненков Ю.М. и др.). Следует отметить, что как на начало настоящей работы (2013 г.), так и на сегодняшний день нами не обнаружено работ (за исключением наших) по изучению влияния РТС на свойства марганец-цинковых, магний цинковых и никель-цинковых феррошпинелей промышленных марок или близких по химическому составу к промышленным.

<u>Объект исследования</u> – марганец-цинковые (Mn-Zn), магний-цинковые (Mg-Zn) и никель-цинковые ферриты (Ni-Zn).

<u>Предмет исследования</u> – процессы формирования фазового состава и функциональных свойств магнитомягкой ферритовой керамики при радиационнотермическом спекании пучком ускоренных электронов.

<u>Цель работы</u>

Исходя из проведенного анализа литературных источников, цель диссертационной работы состояла в разработке основ технологии радиационно-термического спекания магнитомягкой ферритовой керамики со структурой шпинели пучком ускоренных электронов.

Для достижения поставленной цели решались следующие задачи:

- выбор базовых составов и легирующих добавок, приготовление реакционных смесей и образцов;
- получение ферритовой керамики, основанной на радиационно-термическом способе нагрева с помощью высокоэнергетических электронных пучков при синтезе и спекании ферритовых материалов;
- изучение изменения структуры и свойств образцов магнитомягкой ферритовой керамики, подвергнутой облучению электронов высокой энергии;
- исследование магнитных свойств поликристаллических ферритов-шпинелей, полученных радиационно-термическим способом.

Научная новизна работы

1. Методом радиационно-термического спекания в пучке быстрых электронов впервые получена магнитомягкая ферритовая керамика трех составов: Mn-Zn марки 2000HM, Ni-Zn марки 2000HH, Mg-Zn марки 600HH.

2. Впервые проведены комплексные исследования и изучены закономерности изменения структуры, фазового состава, физических свойств и эксплуатационных параметров ферритовой керамики 2000HM, 2000HH и 600HH от условий радиационнотермического спекания (температура, время, газовая среда).

3. Впервые в технологии радиационно-термического спекания предложены и успешно использованы предварительно механоактивированные легкоплавкие легирующие добавки.

4. Впервые для улучшения процесса радиационно-термического спекания предложена и успешно использована легирующая добавка в виде наноразмерного порошка карбонильного железа с размером наночастиц 320 – 450 нм.

Практическая значимость работы

Полученные в работе результаты имеют важное практическое значение для СВЧэлектроники, технологии и материаловедения ферритов, магнитной электроники. Конкретно практическая значимость заключается в следующем:

1) Разработаны основы технологии радиационно-термического спекания в пучке ускоренных электронов магнитомягкой ферритовой керамики трех промышленных составов со структурой шпинели.

2) Разработаны энергоэффективные способы получения методом радиационнотермического спекания радиопоглощающих магний-цинковых ферритов (патент РФ № 2536151; патент РФ №2537344).

3) Разработан эффективный способ получения методом РТС ферритовых изделий, позволяющий за счет использования в качестве легирующей добавки наноразмерного порошка карбонильного железа с размером частиц 320 – 450 нм уменьшать время спекания и повысить качество изделий (патент РФ №2548345).

4) Разработан эффективный способ получения методом РТС ферритовых изделий, позволяющий за счет использования в качестве легирующей добавки предварительно механоактивированной легкоплавкой добавки Ві₂O₃ уменьшить время спекания и улучшить электромагнитные характеристики изделий (патент РФ №2536022).

Основные положения, выносимые на защиту

– результаты комплексного исследования структуры и свойств магнитомягкой Mn-Zn,
Ni-Zn, Mg-Zn ферритовой керамики с помощью методов рентгенофазового анализа,
сканирующей электронной микроскопии, мёссбауэровской спектроскопии;

 основы технологии радиационно-термического спекания магнитомягкой ферритовой керамики пучком ускоренных электронов;

механизм интенсификации радиационно-термического спекания магнитомягкой ферритовой керамики при введении в шихту механоактивированной легкоплавкой добавки Bi₂O₃;

– механизм активации радиационно-термического спекания магнитомягкой ферритовой керамики при введении в шихту наноразмерных частиц карбонильного железа;

 механизмы формирования радиопоглощающего феррита при различных режимах радиационно-термического спекания.

Личный вклад автора. Комлев А.С. принимал участие в постановке задач и выборе объектов исследования. При его активном участии разработана, изготовлена и используется на кафедре ТМЭ ячейка для радиационно-термического спекания. Диссертант принимал активное участие в разработке режимов технологии радиационно-термического спекания и участвовал лично в технологических процессах РТС в НИИЯФ МГУ и ИЯФ им. Будкера СО РАН, в получении результатов измерений, их обработке, а также представлении научных публикаций в печать. Отдельные результаты работы получены и опубликованы в печати в соавторстве с сотрудниками НИТУ «МИСиС», ИЯФ им. Будкера СО РАН, НИИЯФ МГУ.

Апробация работы. Результаты диссертационной работы докладывались И обсуждались на следующих конференциях: 69-е Дни науки студентов МИСиС, Москва, НИТУ «МИСиС», 20-21 марта 2014 г.; шестая международная конференция «Кристаллофизика И деформационное поведение перспективных материалов», посвященная 90 – летию со дня рождения профессора Ю.А. Скакова, Москва, НИТУ «МИСиС», 26-28 мая 2015 г.; 2-я Международная научно-практическая конференция «Физика И технология наноматериалов И структур», Курск, Юго-Западный государственный университет, 24-26 ноября 2015 г.; XII Международная научная конференция «Перспективные технологии, оборудование и аналитические системы для материаловедения и наноматериалов», Усть-Каменогорск, 20-22 мая 2015 г.; Научнотехническая конференция АО «НПП «Исток» им. Шокина» «СВЧ-ЭЛЕКТРОНИКА -2016», г. Фрязино, 18-19 мая 2016 г.

Результаты работы использовались при выполнении Государственного контракта № 14.513.11.0054 от 20 марта 2013 г. «Разработка научно-технических основ высокоэффективной радиационно-термической технологии получения магнитомягкой ферритовой керамики для радиоэлектроники, приборостроения и радиопоглощающих покрытий» в рамках федеральной целевой программы «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2007-2013 годы».

Публикации. По материалам диссертации опубликовано 26 научных работ, в том числе 8 статей в журналах, рекомендованных ВАК по специальности, 3 статьи в журналах,

входящих в базы РИНЦ и WOS, 2 статьи в журналах, входящих в базы РИНЦ и SCOPUS, 6 статей в журналах, входящих в базы РИНЦ, 3 статьи в сборниках материалов и докладов международных конференций. По теме диссертации получено 4 патента.

<u>Структура и объем работы</u>. Диссертация содержит список сокращений, введение, 5 глав, общие выводы, список публикаций по теме диссертации, список используемой литературы. Работа изложена на 131 страницах машинописного текста, содержит 52 таблицы, 46 рисунков. Список используемой литературы включает 133 наименования.

Основное содержание работы

Во введении обоснована актуальность проведенных исследований, сформулированы основная цель и конкретные задачи, отмечены научная новизна и практическая значимость полученных результатов, а также основные положения, выносимые на защиту.

Первая глава представляет аналитический обзор литературы, непосредственно связанный с тематикой диссертации. В литературном обзоре представлена общая характеристика ферритов. Рассмотрены кристаллография шпинельных соединений и основные физико-химические свойства. Более детально рассмотрена магнитомягкая ферритовая керамика – Mn-Zn, Ni-Zn, Mg-Zn-ферриты. Описана классическая керамическая технология получения ферритовой керамики, применяемая в настоящее время на предприятиях. Выявлены основные недостатки данной технологии. Предложена альтернативная радиационно-термическая технология спекания ферритовой керамики. Продемонстрированы основные преимущества новой технологии. Особое внимание уделяется процессу взаимодействия быстрых электронов с твердым телом. Рассмотрены физические модели формирования магнитомягких ферритовых керамических материалов и процессов активации твердофазного синтеза. В конце главы сформулированы выводы по литобзору и задачи исследования.

<u>Вторая глава</u> диссертации посвящена описанию технологии радиационнотермического спекания в пучке быстрых электронов поликристаллических феррошпинелей. Представлена информация об объектах исследования, особенностях их получения и методиках исследования.

В качестве основных объектов исследования в работе использовались марганеццинковые (Mn-Zn), магний-цинковые (Mg-Zn) и никель-цинковые ферриты (Ni-Zn).

Объекты исследований готовили по следующей технологии. Смесь исходных оксидов после двухчасового измельчения в вибрационной мельнице М-200 прокаливали в течение 5 часов при температуре 920°С в печи с вращающейся трубой «Гранула» с целью получения ферритового порошка. Синтезированный порошок в течение 2 часов измельчали в вибрационной мельнице М-200. Для активирования спекания перед

измельчением в синтезированный порошок вводили механоактивированный в планетарной мельнице АПФ-3 оксид висмута.

В измельченную шихту вводили связку в виде 10% масс. 10%-го раствора поливинилового спирта и 0,1-0,4% масс цитрата триэтаноламмония с последующим гранулированием смеси протиркой через сетки 0,500 И 0.315 MM. Цитрат триэтаноламмония вводили в состав связки в качестве ПАВ для повышения плотности сырых заготовок. Гранулированный порошок прессовали в кольцевые заготовки размерами 1) D = 23 мм, d = 14 мм, h = 7 мм; 2) D = 19 мм, d = 8 мм, h = 7 мм под давлением 200 МПа.

После сушки до влажности менее 0,5% масс. сырые заготовки помещали в специально сконструированную ячейку РТС и подвергали радиационно-термической обработке (РТО) воздействием быстрых электронов (электронный ускоритель ИЛУ-6, энергия электронов 2,5 МэВ, рабочая частота резонатора 117 МГц, максимальный импульсный ток пучка 450 мА, частота повторений импульса до 50 Гц, длительность импульса тока пучка 0,5 мс). Температура образцов в процессе обработки контролировалась термопарой платина-платина-родий.

С целью устранения в термопаре наводок от пучка электронов, использовался третий платиновый электрод, один конец которого был приварен к рабочему спаю, а противоположный заземлялся. В процессе обработки партию образцов нагревали до температуры 1000°C, 1100°C, 1200°C, 1300°C, 1400°C, соответственно, и выдерживали при нужной температуре 60 минут. В итоге получили кольцевые образцы по 5 образцов на каждый состав и каждое значение температуры.

Микростурктурный анализ образцов после радиационно-термического спекания проводился методом рентгеноспектрального микроанализа (электронно-зондового рентгенолокального микроанализа) на сканирующем электронном микроскопе JEOL JSM 7800F.

Рентгенофазовый и рентгеноструктурный анализ объектов исследования проводился на рентгеновских дифрактометрах ДРОН-3М (Россия), D8 Advance Bruker AXS (Германия). При проведении рентгенофазового анализа на ДРОН-3М использовалось Cu_{Kα}-излучение, а также трубка с железным анодом (рабочий ток – 25 мА, напряжение – 25 кВт). Длина волны излучения 0,193728 нм. При съемке образцов использовался фильтр из Mn. Фокусировка осуществлялась по методу Брэгга-Брентано с двумя щелями Соллера. Измерения производились при комнатной температуре.

Мёссбауэровские исследования образцов ферритовой керамики проводились на мёссбауэровском спектрометре МС-1104Ем, который предназначен для измерения мёссбауэровских спектров поглощения и эмиссии при комнатной, пониженной и

повышенной температурах, а также в «сжатой» геометрии, обеспечивающей повышенную скорость измерений при комнатной температуре.

Для образцов измерения магнитных характеристик использовалась магнитоизмерительная установка МК-3Э, которая предназначена для автоматического измерения магнитных характеристик кольцевых образцов магнитно-мягких материалов. Принцип работы установки заключается в перемагничивании образца по петле гистерезиса и намагничивании по основной кривой намагничивания в постоянном поле по задаваемому режиму, измерении магнитной индукции и напряженности поля в точках петли гистерезиса намагничивания посредством коммутации намагничивающего кривой И поля И вычислении магнитных характеристик измеряемого образца. Были измерены основные параметры образцов: максимальная магнитная индукция B_m, остаточная индукция B_r, коэрцитивная сила H_c, максимальная магнитная проницаемость µ_m, коэффициент прямоугольности η.

<u>Третья глава</u> посвящена исследованию влияния режимов радиационно-термического спекания на структуру и магнитные свойства образцов.

При проведении элементного анализа отбирались по 5 образцов каждого состава, полученных по отработанной технологической схеме. Полученные результаты позволили сделать заключение, что состав полученных образцов не зависит от технологической схемы получения и определяется заложенной шихтой.

На рис. 1 приведена характерная рентгеновская дифрактограмма сырой заготовки феррита марки 2000HH состава $Ni_{0.32}Zn_{0.68}Fe_2O_4$ из ферритизованной смеси исходных ферритообразующих оксидов (по полной технологической схеме), на рис. 2 – характерная рентгеновская дифрактограмма этой заготовки, после спекания методом РТС. Для сравнения на рис. 3 приведены рентгеновские дифрактограммы заготовки феррита того же состава после спекания методом РТС, изготовленной из смеси исходных оксидов (короткая технологическая схема).

На рис. 1 приведена характерная рентгеновская дифрактограмма сырой заготовки феррита марки 2000HH состава $Ni_{0.32}Zn_{0.68}Fe_2O_4$ из ферритизованной смеси исходных ферритообразующих оксидов (по полной технологической схеме), на рис. 2 – характерная рентгеновская дифрактограмма этой заготовки, после спекания методом РТС. Для сравнения на рис. 3 приведены рентгеновские дифрактограммы заготовки феррита того же состава после спекания методом РТС, изготовленной из смеси исходных оксидов (короткая технологическая схема).

Рис. 1 – Характерная рентгеновская дифрактограмма образца сырой заготовки феррита марки 2000НН из ферритизованного порошка

Рис. 2 – Характерная рентгеновская дифрактограмма образца феррита 2000НН, полученного методом радиационно-термического спекания при температуре 1200°С (по полной технологической схеме)

Рис. 3 – Характерная рентгеновская дифрактограмма образца феррита 2000HH, полученного методом радиационно-термического спекания при температуре 1200°С (по короткой технологической схеме)

Как видно из данных рис. 1 – 3, во всех трех случаях имеется исключительно фаза шпинели (NiZn)Fe₂O₄. Основные пики на дифрактограмме образца, полученного по полной технологической схеме, полностью совпадают с пиками на дифрактограмме образца, полученного по короткой технологической схеме. Разница только в том, что при получении Ni-Zn-феррита методом РТС с использованием полной технологической схемы получения шихты дифрактограмма имеет более качественный вид (рис. 2), что говорит о лучшем качестве образца.

Это можно объяснить торможением процессов твердофазной реакции вследствие окружения частиц оксидов прослойкой молекул связующего вещества, которая разлагается в интервале 400 – 600°C при РТ-спекании по короткой технологической схеме.

	ту теппен методом раднационно терми теского спекания							
	No	No		Параметр	Средний размер			
	п/п образца	JN≌	Химический состав	решетки,	кристаллитов,	Примечание		
			A°	A°				
	1	3-1	Ni _{0,29} Zn _{0,63} Fe _{2,08} O ₄	8,383	549,7	Полная технол. схема		
	2	8	Mn _{0,743} Zn _{0,219} Fe _{2,038} O ₄	8,489	476,0	Полная технол. схема		
	3	2	Mn _{0,601} Zn _{0,273} Fe _{2,127} O ₄	8,479	482,0	Полная технол. схема		
	4	5	Mg _{0,404} Mn _{0,160} Zn _{0,448} Fe ₂ O ₄	8,420	471,0	Полная технол.		
						entenna		

Таблица 1 – Структурные параметры образцов магнитомягкой ферритовой керамики, полученной методом радиационно-термического спекания

В таблице 1 представлены рассчитанные по рентгеновским дифрактограммам структурные параметры полученных методом РТС образцов ферритовой керамики всех четырех составов.

На рис. 4 – 5 представлены изображения сканирующей электронной микроскопии ферритовых образцов, полученных при двух разных температурных режимах радиационно-термического спекания, полученные на сканирующем электронном микроскопе JEOL JSM 7800F.

Рис. 4 – Изображение СЭМ образца Mg-Zn-феррита 600HH, полученного РТС 1000°С

Рис. 5 – Изображение СЭМ образца Mg-Zn-феррита 600HH, полученного РТС 1400°

Электронно-микроскопический анализ позволил исследовать микроструктуру, а также количественную характеристику размеров частиц порошка. На рисунке 4 представлена микроструктура образца марки 600НН, спеченного методом РТС при температуре 1000°С. Данный образец имеют мелкозернистую поликристаллическую структуру со средним размером зерна 0,5 – 2,0 мкм. По данным изображениям можно судить о начальной стадии спекания.

При радиационно-термическом спекании образцов 2000HM, 2000HH, 600HH при температурах 1200°C, 1300°C, 1400°C, соответственно, наблюдается увеличение размеров зерна в несколько раз (5 – 20 мкм), что следует объяснить процессами рекристаллизации. По данным изображением можно судить о конечной стадии спекания. Но несмотря на увеличение среднего размер зерна, сохраняется межзеренная пористость, что влияет на магнитную проницаемость и остаточную индукцию ферритов.

Полученные изображения характерны для ферритовой керамики, что доказывает высокое качество радиационно-термического спекания. Большинство электромагнитных параметров ферритов (магнитная проницаемость, индукция, коэрцитивная сила, потери на гистерезис и вихревые токи и т.д.) являются структурно-чувствительными, т.е. зависят от структуры спеченного изделия. Структура спеченного изделия как дисперсной системы определяется размерами и количеством пор, неметаллических включений, размерами и формой зерен. Она образуется в процессе спекания и во многом определяется качеством и структурой сырых заготовок, полученных формованием.

Методом мёссбауэровской спектроскопии были исследованы образцы полученных методом РТС ферритов следующих составов:

Мп_{0,743} Zn_{0,219} Fe_{2,038} O₄ (модифицированный состав феррита 2500HMC2) Ni_{0,29} Zn_{0,63}Fe_{2,08} O₄ (модифицированный состав феррита 2000HH) Mg_{0,404} Mn_{0,148} Zn_{0,448} Fe₂O₄ (MgZn-феррит с уровнем свойств NiZn-феррита 600HH)

Измерения проводились по классической методике на мёссбауэровском спектрометре Ms1104Em, обработка спектров выполнялась с помощью программы «Univem Ms». Изомерный сдвиг определялся относительно α-Fe. На рисунке 6 приведены полученные спектры образцов.

Особенностью полученных мёссбауэровских спектров является их суперпозиционный характер и различные магнитные поля на ядрах Fe⁵⁷ неэквивалентных Наилучший разложения ионов железа. вариант спектров на составляющие, обеспечивающий min χ^2 , был выявлен при выделении в них 5 секстетов и дополнительного дублета в Ni-Zn- и в Mg-Mn-Zn-ферритах. Несколько секстетов в спектре объясняются неэквивалентными положениями ионов железа за счет оборванных связей Fe – O – Fe при вхождении немагнитных ионов Mg и Zn в структуру феррита, причем величина магнитного поля на ядрах железа связана с числом оборванных связей, чем больше оборванных связей: тем меньше величина магнитного поля. Поскольку в Mn-Zn-феррите содержание немагнитного иона Zn минимально среди изученных образцов, то мы наблюдаем мёссбауэровский спектр с хорошим разрешением и максимально возможными магнитными полями.

a – MnZn; б –NiZn; в – MgMnZn

На основании заданного состава ферритов и полученных данных о валентности, координации и распределении железа по структурным позициям, по мёссбауэровским спектрам было рассчитаны их кристаллохимические формулы, приведенные ниже:

 $(Fe^{3+}_{0,187}Zn^{2+}_{0,219}Mn^{2+}_{0,594})[Fe^{3+}_{1,851}Mn_{0,149}]O^{2-}_{4}$ (модифицированный состав феррита 2500HMC2) (Fe^{3+}_{0,2}Zn^{2+}_{0,63}Ni^{2+}_{0,17})[Fe^{3+}_{1,88}Ni^{2+}_{0,12}]O^{2-}_{4} (модифицированный состав феррита 2000HH) (Fe^{2+}_{0,148}Zn^{2+}_{0,448}Mg^{2+}_{0,404})[Fe^{3+}_{1,852}Mn^{3+}_{0,16}]O^{2-}_{4} (MgZn-феррит с уровнем свойств NiZn-феррита 600HH) Магнитные исследования образцов проводились с помощью индукционного метода на магнитоизмерительной установке МК-ЗЭ. На рисунке 7 представлены петли гистерезиса ферритовых образцов, полученных РТС в интервале температур 1100 – 1400°С.

Рис. 7 – Петли гистерезиса образцов марки 600HH, полученных РТС при разных температурах: а – 1100°С; б – 1200°С; в – 1300°С, г – 1400°С

Из рис. 7 видно, что изменение температуры спекания влияет на форму петли: с увеличением температуры петля удлиняется, также меняется ее площадь. Это свидетельствует о том, что при «косолежайщей» форме петли процесс спекания прошел не до конца. Наблюдается начальная стадия спекания. Аналогичные петли магнитного гистерезиса наблюдаются у образцов других составов.

Основными характеристиками петли гистерезиса являются остаточная индукция B_r, коэрцитивная сила H_c, и площадь петли, характеризующая потери на гистерезис за один цикл перемагничивания.

На рис. 8 представлены следующие зависимости параметров петли гистерезиса и геометрических размеров от температуры радиационно-термического спекания образцов: а – максимальная магнитная индукция B_m; б – остаточная магнитная индукция B_r; в – коэрцитивная сила H_c; г – максимальная магнитная проницаемость μ_m, д – коэффициент прямоугольности η; е – внешний диаметр образца D, ж – внутренний диаметр образца d, з – толщина образца h.

Рис. 8 – Зависимости параметров петли гистерезиса и геометрических размеров от температуры РТС образца марки 600HH

На рисунке 8а представлена зависимость магнитной индукции насыщения B_m от температуры PT-спекания в диапазоне 1000°C – 1400°C. Можно видеть, что величина B_m возрастает с увеличение температуры спекания.

На рисунке 8б представлена зависимость остаточной магнитной индукции Br от температуры PT-спекания. По данному графику можно увидеть, что величина Br для образца марки 600HH достигает максимума при 1250°C.

На рисунке 8в представлена зависимость коэрцитивной силы H_c от температуры РТспекания. Коэрцитивная сила образца марки 600НН убывает с увеличением температуры. Аналогичная зависимость наблюдается у образцов марки 2000НМ и 2000НН.

Коэрцитивная сила образцов марки 600HH, 2000HM и 2000HH снижается с увеличением температуры РТС. Это обусловлено тем, что с увеличением температуры РТС идет процесс рекристаллизации: рост величины зерен. При этом уменьшается общая площадь границ зерен, что уменьшает процесс торможения доменных границ на границах зерен и, как результат, приводит к уменьшению коэрцитивной силы.

На рисунке 8г представлена зависимость максимальной магнитной проницаемости μ_m от температуры РТ-спекания. Максимальная магнитная проницаемость образцов марки 600HH монотонно растет и достигает своего максимального значения при 1400°C. Такой же рост максимальной магнитной проницаемости наблюдается у образцов марки 2000HM и 2000HH.

На рисунке 8д представлена зависимость коэффициента прямоугольности петли гистерезиса от температуры РТ-спекания. Коэффициент прямоугольности образца марки 600HH, 2000HM и 2000HH монотонно спадает с увеличением температуры РТ-спекания. На рисунке 8е, ж, з представлена зависимость основных геометрических размеров от температуры спекания. На всех графиках происходит монотонное снижение. Это связано с тем, что происходит усадка образцов при увеличении температуры. Образцы уменьшаются в размерах.

<u>Четвертая глава</u> посвящена исследованию влияния технологических факторов и легирующих добавок на эксплуатационные параметры поликристаллических ферритовшпинелей.

Увеличение содержания железа на 0,03 форм. ед. (при уменьшении на такое же количество суммарного содержания марганца и цинка) в Mn-Zn-феррите марки 2000HM позволяет на 5–10 % увеличить магнитную индукцию и на 5–7 % магнитную проницаемость.

Максимальная плотность и магнитная индукция в Mn-Zn-феррите и Ni-Zn-феррите достигается при введении в качестве ПАВ 0,3 % масс. цитрата триэтаноламмония.

Увеличение содержания оксида железа на 0,08 форм. ед. в Ni-Zn-феррите марки 2000НН позволяет на 5-10 % увеличить магнитную проницаемость и в 2-3 раза

диэлектрическую проницаемость указанного феррита, что смещает в область низких частот кривую поглощения электромагнитного излучения.

Разработан базовый состав Mg-Zn-феррита по уровню параметров соответствующий Ni-Zn-ферриту промышленной марки 600HH, не содержащий дефицитный и дорогой оксид никеля.

Максимальная плотность и начальная магнитная проницаемость в Mg-Zn-феррите марки 600HH достигается при введении 0,4 % масс. цитрата триэтаноламмония.

Результаты исследований показали, что механоактивация порошков Bi₂O₃ позволяет на 7–12% уменьшить время РТС магнитомягких ферритов-шпинелей до их полной готовности.

Наилучшие результаты для РТС магнитомягкой ферритовой керамики, спеченной из смеси исходных ферритообразующих оксидов, получены при введении механоактивированного оксида Bi₂O₃ в количестве 0,05 % масс.

Наилучшие результаты для РТС магнитомягкой ферритовой керамики показывает присутствие 0,03% масс. карбонильного железа с размером наночастиц 320-400 нм.

Результаты исследований показали, что карбонильное железо позволяет на 12-15% уменьшить время РТС магнитомягких ферритов до их полной готовности и повысить уровень электромагнитных свойств.

<u>Пятая глава</u> посвящена практическому использованию технологии РТС для получения магнитомягкой радиопоглощающей ферритовой керамики.

Наилучшие результаты по уровню ослабления отраженного от поверхности Mg-Znферрита сигнала достигаются при РТС в течение 105 мин и температуре 1100°С.

Процесс РТ-спекания позволяет активировать массоперенос на всех стадиях спекания, что значительно снижает длительность спекания, обеспечивает увеличение уровня электромагнитных свойств.

Наилучшие результаты по уровню ослабления отраженного от поверхности Mg-Znферрита сигнала достигаются при РТ-обработке с последующим охлаждением в среде азота или аргона с температуры 875°С.

В главе представлены экспериментальные результаты по разработке двух способов получения методом РТС радиопоглощающих магний-цинковых ферритов (патент РФ №2536151, патент РФ №2537344).

Основные результаты и выводы

 Разработаны основы технологии радиационно-термического спекания поликристаллических ферритов-шпинелей марок 2000HM, 2000HH и 600HH. Для указанных ферритов показана высокая временная- и энергоэффективность технологии РТС по сравнению с керамической технологией.

2. Впервые проведены комплексные исследования кристаллической и магнитной структуры, физических свойств и параметров петли магнитного гистерезиса поликристаллических ферритов-шпинелей трех промышленных составов (2000HM, 2000HH, 600HH), полученных методом радиационно-термического спекания.

3. Установлено, что увеличение температуры РТС магнитомягких ферритовшпинелей 2000HM, 2000HH и 600HH с 1100°C до 1400°C приводит к росту их магнитной индукции и магнитной проницаемости и уменьшению коэффициента прямоугольности и коэрцитивной силы.

4. Проведенные исследования позволили получить оптимальные химические составы поликристаллических ферритов-шпинелей следующих марок: $Mn_{0,601}Zn_{0,273}Fe_{0,127}Fe_2O_4$ (2000HM), $Mn_{0,743}Zn_{0,219}Fe_{0,038}Fe_2O_4$ (2500HMC2), $Ni_{0,29}Zn_{0,63}Fe_{2,08}O_4$ (2000HH), $Mg_{0,404}Mn_{0,148}Zn_{0,448}Fe_2O_4$ (600HH).

5. Показано, что максимальная плотность поликристаллических ферритов-шпинелей достигается при введении 0,3 % масс. цитрата триэтаноламмония в качестве ПАВ, что обеспечивает максимальный уровень магнитной проницаемости.

6. Увеличение содержания железа на 0,03 форм. ед. в Mn-Zn-феррите марки 2000HM (при уменьшении на такое же количество суммарного содержания марганца и цинка) позволяет на 5-10 % увеличить магнитную индукцию и на 5-7 % магнитную проницаемость.

7. Увеличение содержания оксида железа в Ni-Zn-феррите марки 2000HH на 0,08 форм. ед. позволяет на 5-10 % увеличить магнитную проницаемость и в 2-3 раза диэлектрическую проницаемость указанного феррита, что смещает в область низких частот кривую поглощения электромагнитного излучения.

8. Показано, что добавление карбонильного железа с размером частиц 320-450 нм в качестве легирующей добавки в количестве 0,01-0,03 форм. ед. позволяет на 12 – 15 % уменьшить время радиационно-термического спекания магнитомягких ферритов до их полной готовности и повысить уровень электромагнитных свойств.

9. Показано, что добавление предварительно механоактивированной в течение 25-50 мин легкоплавкой добавки Bi₂O₃ в качестве легирующей примеси в количестве 0,01-0,03 форм. ед. позволяет уменьшить время радиационно-термического спекания магнитомягких ферритов до их полной готовности и повысить уровень электромагнитных свойств.

10. Разработаны энергоэффективные способы получения методом радиационнотермического спекания ферритовых изделий на основе поликристаллических ферритовшпинелей 2000HM, 2000HH, 600HH (патент РФ № 2536022, патент РФ № 2548345).

11. Разработаны энергоэффективные способы спекания радиопоглощающих магнийцинковых ферритов (патент РФ № 2536151, патент РФ № 2537344).

Результаты диссертации опубликованы в следующих работах:

1. Костишин В.Г., Кожитов Л.В., Андреев В.Г., Савченко А.Г., Комлев А.С. Способ спекания радиопоглощающих магний-цинковых ферритов. Патент №2536151 от 20.12.2014 г.

2. Костишин В.Г., Кожитов Л.В., Андреев В.Г., Морченко А.Т., Читанов Д.Н., Адамцов А.Ю., Комлев А.С. Способ получения ферритовых изделий путем радиационнотермического спекания. Патент №2536022 от 20.12.2014 г.

3. Костишин В.Г., Панина Л.В., Андреев В.Г., Морченко А.Т., Адамцов А.Ю., Комлев А.С. Способ спекания радиопоглощающих магний-цинковых ферритов. Патент №2537344 от 10.01.2015 г.

4. Костишин В.Г., Панина Л.В., Андреев В.Г., Савченко А.Г., Канева И.И., Комлев А.С., Николаев А.Н. Способ получения ферритовых изделий. Патент №2548345 от 20.04.2015 г.

5. Костишин В.Г., Андреев В.Г., Канева И.И., Панина Л.В., Читанов Д.Н., Юданов Н.А., Комлев А.С., Николаев А.Н. Получение методом радиационно-термического спекания MgZn-ферритов с уровнем свойств NiZn-феррита марки 600HH // Известия Юго-Западного государственного университета. 2013. № 5(50). С. 228-235.

6. Костишин В.Г., Коровушкин В.В., Панина Л.В., Комлев А.В., Юданов Н.А., Адамцов А.Ю., Николаев А.Н., Андреев В.Г. Структура и свойства MnZn-ферритовой керамики, полученной методом радиационно-термического спекания // Известия Юго-Западного государственного университета. Серия: Техника и технологии. 2013. № 2. С. 053-059.

7. Костишин В.Г., Кожитов Л.В., Коровушкин В.В., Андреев В.Г., Читанов Д.Н., Юданов Н.А., Морченко А.Т., Комлев А.С., Адамцов А.Ю., Николаев А.Н. Получение магнитомягких ферритов марки 2000НН методом радиационно-термического спекания из предварительно ферритизированной шихты и из шихты без ферритизации // Известия Юго-Западного государственного университета. Серия: Физика и химия. 2013. № 2. С.008-018.

8. Костишин В.Г., Андреев В.Г., Вергазов Р.М., Морченко А.Т., Комлев А.С., Николаев А.Н. Влияние легирующих добавок на свойства радиопоглощающих MgZnферритов, полученных методом радиационно-термического спекания // Электронный научный журнал «Инженерный вестник Дона». 2013. № 3. www.ivdon.ru.

9. Костишин В.Г., Андреев В.Г., Читанов Д.Н., Комлев А.С., Николаев А.Н., Адамцов А.Ю. Влияние базового химического состава на свойства NiZn-ферритов, полученных методом радиационно-термического спекания // Электронный научный журнал «Инженерный вестник Дона». 2013. № 3. www.ivdon.ru.

10. Kostishin V.G., Korovushkin V.V., Panina L.V., Andreev V.G., Komlev A.S., Yudanov N.A., Adamtsov A.Yu., Nikolaev A.N. Magnetic structure and properties of Mn-Zn ferrites prepared by radiation-enhanced thermal sintering // Inorganic materials. 2014. Volume 50. Issue 12. pp. 1252-1256. https://doi.org/10.1134/S0020168514120115.

11. Kostishin V.G., Andreev V.G., Panina L.V., Chitanov D.N., Yudanov N.A., Komlev A.S., Nikolaev A.N. Soft-magnetic Mg-Zn ferrite ceramics comparable in performance to 600NN Ni-Zn ferrite: Fabrication by radiation-enhanced thermal sintering // Inorganic materials. 2014. Volume 50. Issue 11. pp. 1174-1178. https://doi.org/10.1134/S0020168514110077.

12. Kostishin V.G., Andreev V.G., Korovushkin V.V., Chitanov D.N., Yudanov N.A., Morchenko A.T., Komlev A.S., Adamtsov A.Yu., Nikolaev A.N. Preparation of 2000NN ferrite ceramics by a complete and a short radiation-enhanced thermal sintering process // Inorganic materials. 2014. Volume 50. Issue 12. pp. 1317-1323. https://doi.org/10.1134/S0020168514110089.

13. Костишин В.Г., Андреев В.Г., Коровушкин В.В., Читанов Д.Н., Юданов Н.А., Морченко А.Т., Комлев А.С., Адамцов А.Ю., Николаев А.Н. Получение ферритовой керамики марки 2000НН методом радиационно-термического спекания по полной и короткой технологической схемам // Неорганические материалы, 2014. т. 50. № 12. С. 1387-1392.

14. Костишин В.Г., Андреев В.Г., Панина Л.В., Читанов Д.Н., Юданов Н.А., Комлев А.С., Николаев А.Н. Получение магнитомягкой Mg-Zn-ферритовой керамики с уровнем свойств Ni-Zn-феррита марки 600HH методом радиационно-термического спекания // Неорганические материалы. 2014. т. 50. № 11. С. 1266.

15. Костишин В.Г., Коровушкин В.В., Панина Л.В., Андреев В.Г., Комлев А.С., Юданов Н.А., Адамцов А.Ю., Николаев А.Н. Магнитная структура и свойства MnZnферритов, полученных методом радиационно-термического спекания // Неорганические материалы. 2014. т. 50. № 12. С. 1352-1356.

16. Kiselev B.G., Kostishin V.G., Komlev A.S., Lomonosova N.V. Substantiation of economic advantages of technology of radiation-thermal agglomeration of ferrite ceramics // Tsvetnye Metally. 2015. Volume 2015. Issue 4. Pp. 7-11. https://doi.org/10.175.80/tsm.2015.04.01.

17. Kostishyn V.G., Komlev A.S., Korobeynikov M.V., Bryazgin A.A., Shvedunov V.I., Timofeev A.V., Mikhailenko M.A. Effect of a temperature mode of radiation-thermal sintering the structure and magnetic properties of Mn-Zn-ferrites // Journal of Nano- and Electronic Physics. 2015. Volume 7. № 4. 04044(4pp).

18. Костишин В. Г., Киселев Б.Г., Комлев А.С., Ломоносова Н.В. Экономические преимущества технологии радиационно-термического спекания ферритов-шпинелей по

сравнению с классической керамической технологией // Таврический научный обозреватель. 2015. № 4-3. С. 72-77.

19. Костишин В. Г., Комлев А.С., Коробейников М.В., Брязгин А.А., Шведунов В.И., Коровушкин В.В., Тимофеев А.В. Получение Mg-Zn-ферритовой керамики марки 600HH методом радиационно-термического спекания // Таврический научный обозреватель. 2015. № 4-3. С. 78-84.

20. Костишин В. Г., Комлев А.С., Коробейников М.В., Брязгин А.А., Тимофеев А.В. Получение Ni-Zn-ферритовой керамики марки 2000HH методом радиационнотермического спекания // Таврический научный обозреватель. 2015. № 4-3. С. 85-90.

21. Комлев А.С. Ускорители электронов для радиационно-термической технологии получения ферритовой керамики // Таврический научный обозреватель. 2016. № 12-1 (17). С. 142-145.

22. Комлев А.С. Физическая модель радиационно-термической технологии получения ферритовой керамики // Таврический научный обозреватель. 2015. № 12-1 (17). С. 139-141.

23. Комлев А.С. Сравнение классической керамической технологии с радиационнотермической технологией получения ферритовой керамики // Таврический научный обозреватель. 2015. № 12-1 (17). С. 135-138.

24. Комлев А.С. Радиационно-термическая технология спекания магнитомягкой ферритовой керамики для радиоэлектроники, приборостроения и радиопоглощающих покрытий. // 69-е Дни науки студентов МИСиС: международные, межвузовские и институтские научно-технические конференции. Москва. МИСиС. 2014 г. С. 527-528.

25. Костишин В.Г., Комлев А.С., Коробейников М.В., Брязгин А.А., Шведунов В.И., Тимофеев А.В., Михайленко М.А. Влияние температурного режима радиационнотермического спекания на структуру и магнитные свойства Mn-Zn-ферритов // Сборник научных статей 2-й Международной научно-практической конференции: Физика и технология наноматериалов и структур. Курск. 24-26 ноября 2015 г. С. 252-258.

26. Костишин В.Г. Шведунов В.И. Комлев А.С. Пахомов Н.И. Ханкин В.В. О возможности получения магнитомягкой ферритовой керамики методом радиационнотермического спекания. // Сборник тезисы докладов: Шестая Международная конференция Кристаллофизика и деформационное поведение перспективных материалов. Москва, НИТУ «МИСиС», 26-28 мая 2015 г.